Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.08387
Cited By
Graph Neural Networks for Maximum Constraint Satisfaction
18 September 2019
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
NAI
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph Neural Networks for Maximum Constraint Satisfaction"
10 / 10 papers shown
Title
Distributed Constrained Combinatorial Optimization leveraging Hypergraph Neural Networks
Nasimeh Heydaribeni
Xinrui Zhan
Ruisi Zhang
Tina Eliassi-Rad
F. Koushanfar
AI4CE
27
8
0
15 Nov 2023
Unveiling the Limits of Learned Local Search Heuristics: Are You the Mightiest of the Meek?
Ankur Nath
Alan Kuhnle
19
0
0
30 Oct 2023
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Dinghuai Zhang
H. Dai
Nikolay Malkin
Aaron Courville
Yoshua Bengio
L. Pan
24
36
0
26 May 2023
Learning Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning
Joaquim Ortiz de Haro
Jung-Su Ha
Danny Driess
E. Karpas
Marc Toussaint
21
2
0
22 Oct 2022
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction
Jan Tonshoff
Berke Kisin
Jakob Lindner
Martin Grohe
GNN
16
22
0
22 Aug 2022
Solving AC Power Flow with Graph Neural Networks under Realistic Constraints
Luis Bottcher
Hinrikus Wolf
Bastian Jung
Philipp Lutat
M. Trageser
Oliver Pohl
Andreas Ulbig
Martin Grohe
13
10
0
14 Apr 2022
Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits
Simon Ståhlberg
Blai Bonet
Hector Geffner
27
48
0
21 Sep 2021
Link Scheduling using Graph Neural Networks
Zhongyuan Zhao
Gunjan Verma
Chirag R. Rao
A. Swami
Santiago Segarra
GNN
21
33
0
12 Sep 2021
The Logic of Graph Neural Networks
Martin Grohe
AI4CE
13
87
0
29 Apr 2021
word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data
Martin Grohe
27
170
0
27 Mar 2020
1