Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.10461
Cited By
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
19 September 2019
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods"
11 / 11 papers shown
Title
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
23
0
0
04 Oct 2024
Dual Interior Point Optimization Learning
Michael Klamkin
Mathieu Tanneau
Pascal Van Hentenryck
8
2
0
04 Feb 2024
Approximating Solutions to the Knapsack Problem using the Lagrangian Dual Framework
Mitchell Keegan
Mahdi Abolghasemi
44
0
0
06 Dec 2023
Optimal Power Flow in Highly Renewable Power System Based on Attention Neural Networks
Chen Li
Alexander Kies
Kai Zhou
Markus Schlott
O. Sayed
Mariia Bilousova
Horst Stoecker
8
4
0
23 Nov 2023
Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and Optimization
James Kotary
Vincenzo Di Vito
Jacob K Christopher
Pascal Van Hentenryck
Ferdinando Fioretto
19
3
0
22 Nov 2023
Data-driven decision-focused surrogate modeling
Rishabh Gupta
Qi Zhang
OffRL
AI4CE
17
12
0
23 Aug 2023
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
15
45
0
18 Aug 2022
Risk-Aware Control and Optimization for High-Renewable Power Grids
Neil Barry
Minas Chatzos
Wenbo Chen
Dahye Han
Chao-Ming Huang
...
Mathieu Tanneau
Pascal Van Hentenryck
Shangkun Wang
Hanyu Zhang
Haoruo Zhao
17
7
0
02 Apr 2022
Data-Driven Time Series Reconstruction for Modern Power Systems Research
Minas Chatzos
Mathieu Tanneau
Pascal Van Hentenryck
AI4TS
8
11
0
26 Oct 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
14
152
0
09 Oct 2021
Physics-Informed Neural Networks for AC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
20
87
0
06 Oct 2021
1