Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.10726
Cited By
Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture
24 September 2019
Rüdiger Schmitz
F. Madesta
M. Nielsen
Jenny Krause
R. Werner
T. Rösch
MedIm
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture"
6 / 6 papers shown
Title
Cross-attention Spatio-temporal Context Transformer for Semantic Segmentation of Historical Maps
Sidi Wu
Yizi Chen
Konrad Schindler
L. Hurni
19
2
0
19 Oct 2023
OCELOT: Overlapped Cell on Tissue Dataset for Histopathology
Jeongun Ryu
Aaron Valero Puche
Jaewoong Shin
Seonwook Park
Biagio Brattoli
...
S. Cho
K. Paeng
C-Y. Ock
D. Yoo
Sérgio Pereira
31
23
0
23 Mar 2023
A Dual-branch Self-supervised Representation Learning Framework for Tumour Segmentation in Whole Slide Images
Hao Wang
E. Ahn
Jinman Kim
28
7
0
20 Mar 2023
Valuing Vicinity: Memory attention framework for context-based semantic segmentation in histopathology
Oliver Ester
Fabian Horst
C. Seibold
J. Keyl
Saskia Ting
...
P. Ivanyi
Viktor Grünwald
J. Bräsen
Jan Egger
Jens Kleesiek
19
7
0
21 Oct 2022
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
280
10,613
0
19 Feb 2017
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
440
15,637
0
02 Nov 2015
1