Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.11515
Cited By
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
25 September 2019
Tianyu Pang
Kun Xu
Jun Zhu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks"
34 / 34 papers shown
Title
AMPLIFY:Attention-based Mixup for Performance Improvement and Label Smoothing in Transformer
Leixin Yang
Yu Xiang
23
0
0
22 Sep 2023
Long-tailed Visual Recognition via Gaussian Clouded Logit Adjustment
Mengke Li
Yiu-ming Cheung
Yang Lu
22
90
0
19 May 2023
Infinite Class Mixup
Thomas Mensink
Pascal Mettes
29
2
0
17 May 2023
Guidance Through Surrogate: Towards a Generic Diagnostic Attack
Muzammal Naseer
Salman Khan
Fatih Porikli
F. Khan
AAML
20
1
0
30 Dec 2022
Dynamic Test-Time Augmentation via Differentiable Functions
Shohei Enomoto
Monikka Roslianna Busto
Takeharu Eda
OOD
35
5
0
09 Dec 2022
Deep Learning Training Procedure Augmentations
Cristian Simionescu
11
1
0
25 Nov 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
29
2
0
28 Oct 2022
Multitask Learning from Augmented Auxiliary Data for Improving Speech Emotion Recognition
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Björn W. Schuller
20
21
0
12 Jul 2022
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
On the Limitations of Stochastic Pre-processing Defenses
Yue Gao
Ilia Shumailov
Kassem Fawaz
Nicolas Papernot
AAML
SILM
36
30
0
19 Jun 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
27
36
0
15 Jun 2022
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao-quan Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
12
269
0
30 Nov 2021
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
79
49
0
10 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
29
17
0
09 Nov 2021
Impact of Attention on Adversarial Robustness of Image Classification Models
Prachi Agrawal
Narinder Singh Punn
S. K. Sonbhadra
Sonali Agarwal
AAML
16
6
0
02 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Analysis and Applications of Class-wise Robustness in Adversarial Training
Qi Tian
Kun Kuang
Ke Jiang
Fei Wu
Yisen Wang
AAML
16
46
0
29 May 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
23
26
0
18 May 2021
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
24
8
0
22 Mar 2021
Learning Defense Transformers for Counterattacking Adversarial Examples
Jincheng Li
Jiezhang Cao
Yifan Zhang
Jian Chen
Mingkui Tan
AAML
29
2
0
13 Mar 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
19
10
0
15 Feb 2021
Towards Domain-Agnostic Contrastive Learning
Vikas Verma
Minh-Thang Luong
Kenji Kawaguchi
Hieu H. Pham
Quoc V. Le
SSL
15
115
0
09 Nov 2020
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
18
90
0
22 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
32
63
0
19 Oct 2020
InstaHide: Instance-hiding Schemes for Private Distributed Learning
Yangsibo Huang
Zhao-quan Song
K. Li
Sanjeev Arora
FedML
PICV
6
150
0
06 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
9
107
0
05 Oct 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
16
19
0
19 Aug 2020
Remix: Rebalanced Mixup
Hsin-Ping Chou
Shih-Chieh Chang
Jia-Yu Pan
Wei Wei
Da-Cheng Juan
34
231
0
08 Jul 2020
Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks, and Cross-corpus Setting for Speech Emotion Recognition
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Björn W. Schuller
33
28
0
18 May 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
17
84
0
21 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
83
820
0
19 Feb 2020
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1