Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.12790
Cited By
Hamiltonian Graph Networks with ODE Integrators
27 September 2019
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Graph Networks with ODE Integrators"
48 / 48 papers shown
Title
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Z. Liu
Xiaoda Wang
Bohan Wang
Zijie Huang
Carl Yang
Wei-dong Jin
AI4TS
AI4CE
143
1
0
29 Mar 2025
Learning System Dynamics without Forgetting
Xikun Zhang
Dongjin Song
Yushan Jiang
Yixin Chen
Dacheng Tao
AI4CE
37
2
0
30 Jun 2024
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
35
2
0
16 Jun 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Minkai Xu
Jiaqi Han
Aaron Lou
Jean Kossaifi
Arvind Ramanathan
Kamyar Azizzadenesheli
J. Leskovec
Stefano Ermon
A. Anandkumar
AI4CE
29
16
0
19 Jan 2024
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
34
1
0
11 Jul 2023
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning
Chenxin Xu
R. Tan
Yuhong Tan
Siheng Chen
Yu Wang
Xinchao Wang
Yanfeng Wang
30
96
0
20 Mar 2023
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
32
22
0
10 Nov 2022
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
17
16
0
24 Oct 2022
Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
L. Prantl
Benjamin Ummenhofer
V. Koltun
Nils Thuerey
AI4CE
PINN
26
29
0
12 Oct 2022
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
41
12
0
23 Sep 2022
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural Network
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
28
17
0
23 Sep 2022
Learning the Dynamics of Particle-based Systems with Lagrangian Graph Neural Networks
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
31
20
0
03 Sep 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
26
4
0
22 Aug 2022
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
22
1
0
30 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
16
33
0
11 Jun 2022
Towards Fast Simulation of Environmental Fluid Mechanics with Multi-Scale Graph Neural Networks
Mario Lino
Stathi Fotiadis
Anil A. Bharath
C. Cantwell
AI4CE
11
12
0
05 May 2022
Equivariant Graph Mechanics Networks with Constraints
Wen-bing Huang
J. Han
Yu Rong
Tingyang Xu
Fuchun Sun
Junzhou Huang
AI4CE
33
79
0
12 Mar 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
27
31
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Learning to Simulate Unseen Physical Systems with Graph Neural Networks
Ce Yang
Weihao Gao
Di Wu
Chong-Jun Wang
PINN
AI4CE
22
4
0
28 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
41
27
0
25 Jan 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
27
28
0
16 Dec 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
12
5
0
19 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
27
28
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
28
93
0
02 Nov 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
16
58
0
21 Oct 2021
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
Karl Otness
Arvi Gjoka
Joan Bruna
Daniele Panozzo
Benjamin Peherstorfer
T. Schneider
Denis Zorin
24
23
0
09 Aug 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
25
43
0
16 Jul 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
39
42
0
23 Jun 2021
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
24
253
0
21 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
22
25
0
25 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
22
49
0
09 Feb 2021
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
33
25
0
23 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
103
49
0
27 Feb 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
17
316
0
25 Feb 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
51
1,047
0
21 Feb 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
16
21
0
11 Jan 2020
Graph Neural Ordinary Differential Equations
Michael Poli
Stefano Massaroli
Junyoung Park
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
42
154
0
18 Nov 2019
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
24
0
0
22 Oct 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,400
0
01 Dec 2016
1