ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00177
  4. Cited By
Advantage-Weighted Regression: Simple and Scalable Off-Policy
  Reinforcement Learning

Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

1 October 2019
Xue Bin Peng
Aviral Kumar
Grace Zhang
Sergey Levine
    OffRL
ArXivPDFHTML

Papers citing "Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning"

50 / 404 papers shown
Title
Offline Preference-Based Apprenticeship Learning
Offline Preference-Based Apprenticeship Learning
Daniel Shin
Daniel S. Brown
Anca D. Dragan
OffRL
35
17
0
20 Jul 2021
Reward-Weighted Regression Converges to a Global Optimum
Reward-Weighted Regression Converges to a Global Optimum
M. Strupl
Francesco Faccio
Dylan R. Ashley
R. Srivastava
Jürgen Schmidhuber
12
4
0
19 Jul 2021
Hierarchical Few-Shot Imitation with Skill Transition Models
Hierarchical Few-Shot Imitation with Skill Transition Models
Kourosh Hakhamaneshi
Ruihan Zhao
Albert Zhan
Pieter Abbeel
Michael Laskin
OffRL
19
40
0
19 Jul 2021
OptiDICE: Offline Policy Optimization via Stationary Distribution
  Correction Estimation
OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation
Jongmin Lee
Wonseok Jeon
Byung-Jun Lee
J. Pineau
Kee-Eung Kim
OffRL
37
91
0
21 Jun 2021
Behavioral Priors and Dynamics Models: Improving Performance and Domain
  Transfer in Offline RL
Behavioral Priors and Dynamics Models: Improving Performance and Domain Transfer in Offline RL
Catherine Cang
Aravind Rajeswaran
Pieter Abbeel
Michael Laskin
OffRL
32
29
0
16 Jun 2021
Offline RL Without Off-Policy Evaluation
Offline RL Without Off-Policy Evaluation
David Brandfonbrener
William F. Whitney
Rajesh Ranganath
Joan Bruna
OffRL
42
162
0
16 Jun 2021
On Multi-objective Policy Optimization as a Tool for Reinforcement
  Learning: Case Studies in Offline RL and Finetuning
On Multi-objective Policy Optimization as a Tool for Reinforcement Learning: Case Studies in Offline RL and Finetuning
A. Abdolmaleki
Sandy H. Huang
Giulia Vezzani
Bobak Shahriari
Jost Tobias Springenberg
...
András Gyorgy
Csaba Szepesvári
R. Hadsell
N. Heess
Martin Riedmiller
OffRL
27
5
0
15 Jun 2021
A Minimalist Approach to Offline Reinforcement Learning
A Minimalist Approach to Offline Reinforcement Learning
Scott Fujimoto
S. Gu
OffRL
58
788
0
12 Jun 2021
Offline Reinforcement Learning as Anti-Exploration
Offline Reinforcement Learning as Anti-Exploration
Shideh Rezaeifar
Robert Dadashi
Nino Vieillard
Léonard Hussenot
Olivier Bachem
Olivier Pietquin
M. Geist
OffRL
54
51
0
11 Jun 2021
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
Lili Chen
Kevin Lu
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
A. Srinivas
Igor Mordatch
OffRL
55
1,574
0
02 Jun 2021
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Yue Wu
Shuangfei Zhai
Nitish Srivastava
J. Susskind
Jian Zhang
Ruslan Salakhutdinov
Hanlin Goh
EDL
OffRL
OnRL
21
184
0
17 May 2021
Learning and Planning in Complex Action Spaces
Learning and Planning in Complex Action Spaces
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
M. Barekatain
Simon Schmitt
David Silver
35
78
0
13 Apr 2021
Co-Adaptation of Algorithmic and Implementational Innovations in
  Inference-based Deep Reinforcement Learning
Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning
Hiroki Furuta
Tadashi Kozuno
T. Matsushima
Y. Matsuo
S. Gu
23
14
0
31 Mar 2021
Policy Information Capacity: Information-Theoretic Measure for Task
  Complexity in Deep Reinforcement Learning
Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning
Hiroki Furuta
T. Matsushima
Tadashi Kozuno
Y. Matsuo
Sergey Levine
Ofir Nachum
S. Gu
OffRL
19
13
0
23 Mar 2021
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale
  of Pessimism
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Paria Rashidinejad
Banghua Zhu
Cong Ma
Jiantao Jiao
Stuart J. Russell
OffRL
39
278
0
22 Mar 2021
Instabilities of Offline RL with Pre-Trained Neural Representation
Instabilities of Offline RL with Pre-Trained Neural Representation
Ruosong Wang
Yifan Wu
Ruslan Salakhutdinov
Sham Kakade
OffRL
22
42
0
08 Mar 2021
Foresee then Evaluate: Decomposing Value Estimation with Latent Future
  Prediction
Foresee then Evaluate: Decomposing Value Estimation with Latent Future Prediction
Hongyao Tang
Jianye Hao
Guangyong Chen
Pengfei Chen
Chong Chen
Yaodong Yang
Lu Zhang
Wulong Liu
Zhaopeng Meng
OffRL
35
4
0
03 Mar 2021
Offline Reinforcement Learning with Pseudometric Learning
Offline Reinforcement Learning with Pseudometric Learning
Robert Dadashi
Shideh Rezaeifar
Nino Vieillard
Léonard Hussenot
Olivier Pietquin
M. Geist
OffRL
39
40
0
02 Mar 2021
Continuous Doubly Constrained Batch Reinforcement Learning
Continuous Doubly Constrained Batch Reinforcement Learning
Rasool Fakoor
Jonas W. Mueller
Kavosh Asadi
Pratik Chaudhari
Alex Smola
OffRL
204
27
0
18 Feb 2021
COMBO: Conservative Offline Model-Based Policy Optimization
COMBO: Conservative Offline Model-Based Policy Optimization
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
OffRL
225
419
0
16 Feb 2021
Q-Value Weighted Regression: Reinforcement Learning with Limited Data
Q-Value Weighted Regression: Reinforcement Learning with Limited Data
Piotr Kozakowski
Lukasz Kaiser
Henryk Michalewski
Afroz Mohiuddin
Katarzyna Kañska
OffRL
38
5
0
12 Feb 2021
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
  Learned
How to Train Your Robot with Deep Reinforcement Learning; Lessons We've Learned
Julian Ibarz
Jie Tan
Chelsea Finn
Mrinal Kalakrishnan
P. Pastor
Sergey Levine
OffRL
20
520
0
04 Feb 2021
Offline Reinforcement Learning from Images with Latent Space Models
Offline Reinforcement Learning from Images with Latent Space Models
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
OffRL
25
126
0
21 Dec 2020
Evolutionary learning of interpretable decision trees
Evolutionary learning of interpretable decision trees
Leonardo Lucio Custode
Giovanni Iacca
OffRL
45
40
0
14 Dec 2020
Semi-supervised reward learning for offline reinforcement learning
Semi-supervised reward learning for offline reinforcement learning
Ksenia Konyushkova
Konrad Zolna
Y. Aytar
Alexander Novikov
Scott E. Reed
Serkan Cabi
Nando de Freitas
SSL
OffRL
73
23
0
12 Dec 2020
Human-in-the-Loop Imitation Learning using Remote Teleoperation
Human-in-the-Loop Imitation Learning using Remote Teleoperation
Ajay Mandlekar
Danfei Xu
Roberto Martín-Martín
Yuke Zhu
Li Fei-Fei
Silvio Savarese
30
82
0
12 Dec 2020
Offline Learning from Demonstrations and Unlabeled Experience
Offline Learning from Demonstrations and Unlabeled Experience
Konrad Zolna
Alexander Novikov
Ksenia Konyushkova
Çağlar Gülçehre
Ziyun Wang
Y. Aytar
Misha Denil
Nando de Freitas
Scott E. Reed
SSL
OffRL
32
67
0
27 Nov 2020
PLAS: Latent Action Space for Offline Reinforcement Learning
PLAS: Latent Action Space for Offline Reinforcement Learning
Wenxuan Zhou
Sujay Bajracharya
David Held
OffRL
38
158
0
14 Nov 2020
Reinforcement Learning with Videos: Combining Offline Observations with
  Interaction
Reinforcement Learning with Videos: Combining Offline Observations with Interaction
Karl Schmeckpeper
Oleh Rybkin
Kostas Daniilidis
Sergey Levine
Chelsea Finn
OffRL
16
105
0
12 Nov 2020
COG: Connecting New Skills to Past Experience with Offline Reinforcement
  Learning
COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning
Avi Singh
Albert Yu
Jonathan Yang
Jesse Zhang
Aviral Kumar
Sergey Levine
SSL
OffRL
OnRL
35
103
0
27 Oct 2020
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
42
39
0
27 Oct 2020
GRAC: Self-Guided and Self-Regularized Actor-Critic
GRAC: Self-Guided and Self-Regularized Actor-Critic
Lin Shao
Yifan You
Mengyuan Yan
Qingyun Sun
Jeannette Bohg
29
23
0
18 Sep 2020
Phasic Policy Gradient
Phasic Policy Gradient
K. Cobbe
Jacob Hilton
Oleg Klimov
John Schulman
OffRL
23
153
0
09 Sep 2020
Offline Meta-Reinforcement Learning with Advantage Weighting
Offline Meta-Reinforcement Learning with Advantage Weighting
E. Mitchell
Rafael Rafailov
Xue Bin Peng
Sergey Levine
Chelsea Finn
OffRL
38
104
0
13 Aug 2020
Model-Based Offline Planning
Model-Based Offline Planning
Arthur Argenson
Gabriel Dulac-Arnold
OffRL
29
151
0
12 Aug 2020
Critic Regularized Regression
Critic Regularized Regression
Ziyun Wang
Alexander Novikov
Konrad Zolna
Jost Tobias Springenberg
Scott E. Reed
...
Noah Y. Siegel
J. Merel
Çağlar Gülçehre
N. Heess
Nando de Freitas
OffRL
36
319
0
26 Jun 2020
RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning
RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning
Çağlar Gülçehre
Ziyun Wang
Alexander Novikov
T. Paine
Sergio Gomez Colmenarejo
...
Matthew W. Hoffman
Ofir Nachum
George Tucker
N. Heess
Nando de Freitas
OffRL
35
71
0
24 Jun 2020
AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
Ashvin Nair
Abhishek Gupta
Murtaza Dalal
Sergey Levine
OffRL
OnRL
46
592
0
16 Jun 2020
What Matters In On-Policy Reinforcement Learning? A Large-Scale
  Empirical Study
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
Marcin Andrychowicz
Anton Raichuk
Piotr Stańczyk
Manu Orsini
Sertan Girgin
...
M. Geist
Olivier Pietquin
Marcin Michalski
Sylvain Gelly
Olivier Bachem
OffRL
31
214
0
10 Jun 2020
Conservative Q-Learning for Offline Reinforcement Learning
Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
OffRL
OnRL
60
1,758
0
08 Jun 2020
Deployment-Efficient Reinforcement Learning via Model-Based Offline
  Optimization
Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization
T. Matsushima
Hiroki Furuta
Y. Matsuo
Ofir Nachum
S. Gu
OffRL
25
147
0
05 Jun 2020
MOPO: Model-based Offline Policy Optimization
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
42
754
0
27 May 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
358
1,968
0
04 May 2020
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
GP
OffRL
135
1,318
0
15 Apr 2020
Learning Agile Robotic Locomotion Skills by Imitating Animals
Learning Agile Robotic Locomotion Skills by Imitating Animals
Xue Bin Peng
Erwin Coumans
Tingnan Zhang
T. Lee
Jie Tan
Sergey Levine
34
499
0
02 Apr 2020
An empirical investigation of the challenges of real-world reinforcement
  learning
An empirical investigation of the challenges of real-world reinforcement learning
Gabriel Dulac-Arnold
Nir Levine
D. Mankowitz
Jerry Li
Cosmin Paduraru
Sven Gowal
Todd Hester
OffRL
36
121
0
24 Mar 2020
Rewriting History with Inverse RL: Hindsight Inference for Policy
  Improvement
Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement
Benjamin Eysenbach
Xinyang Geng
Sergey Levine
Ruslan Salakhutdinov
OffRL
18
86
0
25 Feb 2020
Neural Lyapunov Model Predictive Control: Learning Safe Global
  Controllers from Sub-optimal Examples
Neural Lyapunov Model Predictive Control: Learning Safe Global Controllers from Sub-optimal Examples
Mayank Mittal
Marco Gallieri
A. Quaglino
Seyed Sina Mirrazavi Salehian
Jan Koutník
28
10
0
21 Feb 2020
Reinforcement Learning via Fenchel-Rockafellar Duality
Reinforcement Learning via Fenchel-Rockafellar Duality
Ofir Nachum
Bo Dai
OffRL
16
118
0
07 Jan 2020
Reward-Conditioned Policies
Reward-Conditioned Policies
Aviral Kumar
Xue Bin Peng
Sergey Levine
22
92
0
31 Dec 2019
Previous
123456789
Next