ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00888
  4. Cited By
On the estimation of the Wasserstein distance in generative models

On the estimation of the Wasserstein distance in generative models

2 October 2019
Thomas Pinetz
Daniel Soukup
T. Pock
    GAN
ArXivPDFHTML

Papers citing "On the estimation of the Wasserstein distance in generative models"

2 / 2 papers shown
Title
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
16
48
0
02 Mar 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
282
10,354
0
12 Dec 2018
1