ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02216
  4. Cited By
JuICe: A Large Scale Distantly Supervised Dataset for Open Domain
  Context-based Code Generation

JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation

5 October 2019
R. Agashe
R. Campello
Arthur Zimek
ArXivPDFHTML

Papers citing "JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation"

50 / 53 papers shown
Title
NoTeS-Bank: Benchmarking Neural Transcription and Search for Scientific Notes Understanding
NoTeS-Bank: Benchmarking Neural Transcription and Search for Scientific Notes Understanding
Aniket Pal
Sanket Biswas
Alloy Das
Ayush Lodh
Priyanka Banerjee
Soumitri Chattopadhyay
Dimosthenis Karatzas
Josep Lladós
C. V. Jawahar
VLM
24
0
0
12 Apr 2025
Towards an Understanding of Context Utilization in Code Intelligence
Towards an Understanding of Context Utilization in Code Intelligence
Yanlin Wang
Kefeng Duan
Dewu Zheng
Ensheng Shi
F. Zhang
...
Xilin Liu
Yuchi Ma
Hongyu Zhang
Qianxiang Wang
Zibin Zheng
29
0
0
11 Apr 2025
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Roham Koohestani
Philippe de Bekker
M. Izadi
VLM
45
0
0
07 Mar 2025
Deep-Bench: Deep Learning Benchmark Dataset for Code Generation
Deep-Bench: Deep Learning Benchmark Dataset for Code Generation
Alireza Daghighfarsoodeh
Chung-Yu Wang
Hamed Taherkhani
Melika Sepidband
Mohammad Abdollahi
Hadi Hemmati
Hung Viet Pham
ALM
ELM
93
0
0
26 Feb 2025
How Should We Build A Benchmark? Revisiting 274 Code-Related Benchmarks For LLMs
How Should We Build A Benchmark? Revisiting 274 Code-Related Benchmarks For LLMs
Jialun Cao
Yuk-Kit Chan
Zixuan Ling
Wenxuan Wang
Shuqing Li
...
Pinjia He
Shuai Wang
Zibin Zheng
Michael R. Lyu
S. Cheung
ALM
69
1
0
18 Jan 2025
Text2Cypher: Bridging Natural Language and Graph Databases
Text2Cypher: Bridging Natural Language and Graph Databases
Makbule Gulcin Ozsoy
Leila Messallem
Jon Besga
Gianandrea Minneci
65
0
0
13 Dec 2024
GitChameleon: Unmasking the Version-Switching Capabilities of Code
  Generation Models
GitChameleon: Unmasking the Version-Switching Capabilities of Code Generation Models
Nizar Islah
Justine Gehring
Diganta Misra
Eilif B. Muller
Irina Rish
Terry Yue Zhuo
Massimo Caccia
SyDa
31
1
0
05 Nov 2024
Data Analysis in the Era of Generative AI
Data Analysis in the Era of Generative AI
J. Inala
Chenglong Wang
Steven Drucker
Gonzalo Ramos
Victor C. Dibia
N. Riche
Dave Brown
Dan Marshall
Jianfeng Gao
13
2
0
27 Sep 2024
Is Your AI-Generated Code Really Safe? Evaluating Large Language Models
  on Secure Code Generation with CodeSecEval
Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval
Jiexin Wang
Xitong Luo
Liuwen Cao
Hongkui He
Hailin Huang
Jiayuan Xie
Adam Jatowt
Yi Cai
ELM
20
0
0
02 Jul 2024
Benchmarks and Metrics for Evaluations of Code Generation: A Critical
  Review
Benchmarks and Metrics for Evaluations of Code Generation: A Critical Review
Debalina Ghosh Paul
Hong Zhu
Ian Bayley
ALM
ELM
20
0
0
18 Jun 2024
MHPP: Exploring the Capabilities and Limitations of Language Models
  Beyond Basic Code Generation
MHPP: Exploring the Capabilities and Limitations of Language Models Beyond Basic Code Generation
Jianbo Dai
Jianqiao Lu
Yunlong Feng
Rongju Ruan
Ming Cheng
Haochen Tan
Zhijiang Guo
ELM
LRM
31
11
0
19 May 2024
On the Limitations of Embedding Based Methods for Measuring Functional
  Correctness for Code Generation
On the Limitations of Embedding Based Methods for Measuring Functional Correctness for Code Generation
Atharva Naik
25
1
0
26 Apr 2024
Linguacodus: A Synergistic Framework for Transformative Code Generation
  in Machine Learning Pipelines
Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines
Ekaterina Trofimova
Emil Sataev
Andrey E. Ustyuzhanin
27
0
0
18 Mar 2024
LiveCodeBench: Holistic and Contamination Free Evaluation of Large
  Language Models for Code
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Naman Jain
King Han
Alex Gu
Wen-Ding Li
Fanjia Yan
Tianjun Zhang
Sida I. Wang
Armando Solar-Lezama
Koushik Sen
Ion Stoica
ELM
18
260
0
12 Mar 2024
Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
Linyuan Gong
Sida Wang
Mostafa Elhoushi
Alvin Cheung
27
15
0
07 Mar 2024
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness
Miltiadis Allamanis
Sheena Panthaplackel
Pengcheng Yin
ALM
OffRL
LRM
40
9
0
13 Feb 2024
If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
  Empowers Large Language Models to Serve as Intelligent Agents
If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents
Ke Yang
Jiateng Liu
John Wu
Chaoqi Yang
Yi Ren Fung
...
Xu Cao
Xingyao Wang
Yiquan Wang
Heng Ji
Chengxiang Zhai
LLMAG
ELM
13
67
0
01 Jan 2024
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit
Yao Wan
Yang He
Zhangqian Bi
Jianguo Zhang
Hongyu Zhang
Yulei Sui
Guandong Xu
Hai Jin
Philip S. Yu
12
20
0
30 Dec 2023
Capture the Flag: Uncovering Data Insights with Large Language Models
Capture the Flag: Uncovering Data Insights with Large Language Models
I. Laradji
Perouz Taslakian
Sai Rajeswar
Valentina Zantedeschi
Alexandre Lacoste
Nicolas Chapados
David Vazquez
Christopher Pal
Alexandre Drouin
39
0
0
21 Dec 2023
Enhancing Large Language Models for Secure Code Generation: A
  Dataset-driven Study on Vulnerability Mitigation
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Jiexin Wang
Liuwen Cao
Xitong Luo
Zhiping Zhou
Jiayuan Xie
Adam Jatowt
Yi Cai
38
9
0
25 Oct 2023
Data Contamination Through the Lens of Time
Data Contamination Through the Lens of Time
Manley Roberts
Himanshu Thakur
Christine Herlihy
Colin White
Samuel Dooley
63
30
0
16 Oct 2023
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
  Language Models
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
Ansong Ni
Pengcheng Yin
Yilun Zhao
Chen Wei
Yanjun Wang
...
Mingyuan Zhang
Chen Change Loy
Yingbo Zhou
Dragomir R. Radev
Arman Cohan
ELM
11
16
0
29 Sep 2023
InterCode: Standardizing and Benchmarking Interactive Coding with
  Execution Feedback
InterCode: Standardizing and Benchmarking Interactive Coding with Execution Feedback
John Yang
Akshara Prabhakar
Karthik Narasimhan
Shunyu Yao
6
102
0
26 Jun 2023
Document Understanding Dataset and Evaluation (DUDE)
Document Understanding Dataset and Evaluation (DUDE)
Jordy Van Landeghem
Rubèn Pérez Tito
Łukasz Borchmann
Michal Pietruszka
Pawel Józiak
...
Bertrand Ackaert
Ernest Valveny
Matthew Blaschko
Sien Moens
Tomasz Stanislawek
VGen
14
23
0
15 May 2023
ADELT: Transpilation Between Deep Learning Frameworks
ADELT: Transpilation Between Deep Learning Frameworks
Linyuan Gong
Jiayi Wang
Alvin Cheung
24
2
0
07 Mar 2023
xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
  Understanding, Generation, Translation and Retrieval
xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval
Mohammad Abdullah Matin Khan
M Saiful Bari
Xuan Long Do
Weishi Wang
Md. Rizwan Parvez
Shafiq R. Joty
ALM
ELM
19
0
0
06 Mar 2023
LEVER: Learning to Verify Language-to-Code Generation with Execution
LEVER: Learning to Verify Language-to-Code Generation with Execution
Ansong Ni
Srini Iyer
Dragomir R. Radev
Ves Stoyanov
Wen-tau Yih
Sida I. Wang
Xi Victoria Lin
8
206
0
16 Feb 2023
Execution-Based Evaluation for Open-Domain Code Generation
Execution-Based Evaluation for Open-Domain Code Generation
Zhiruo Wang
Shuyan Zhou
Daniel Fried
Graham Neubig
ELM
13
79
0
20 Dec 2022
Python Code Generation by Asking Clarification Questions
Python Code Generation by Asking Clarification Questions
Haau-Sing Li
Mohsen Mesgar
André F. T. Martins
Iryna Gurevych
16
10
0
19 Dec 2022
Large Language Models Meet NL2Code: A Survey
Large Language Models Meet NL2Code: A Survey
Daoguang Zan
B. Chen
Fengji Zhang
Di Lu
Bingchao Wu
Bei Guan
Yongji Wang
Jian-Guang Lou
ELM
ALM
13
111
0
19 Dec 2022
Natural Language to Code Generation in Interactive Data Science
  Notebooks
Natural Language to Code Generation in Interactive Data Science Notebooks
Pengcheng Yin
Wen-Ding Li
Kefan Xiao
Abhishek Rao
Yeming Wen
...
Paige Bailey
Michele Catasta
Henryk Michalewski
Oleksandr Polozov
Charles Sutton
12
40
0
19 Dec 2022
Who Evaluates the Evaluators? On Automatic Metrics for Assessing
  AI-based Offensive Code Generators
Who Evaluates the Evaluators? On Automatic Metrics for Assessing AI-based Offensive Code Generators
Pietro Liguori
Cristina Improta
R. Natella
B. Cukic
Domenico Cotroneo
ELM
15
16
0
12 Dec 2022
DS-1000: A Natural and Reliable Benchmark for Data Science Code
  Generation
DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation
Yuhang Lai
Chengxi Li
Yiming Wang
Tianyi Zhang
Ruiqi Zhong
Luke Zettlemoyer
Scott Yih
Daniel Fried
Si-yi Wang
Tao Yu
ELM
ALM
19
300
0
18 Nov 2022
Execution-based Evaluation for Data Science Code Generation Models
Execution-based Evaluation for Data Science Code Generation Models
Junjie Huang
Chenglong Wang
Jipeng Zhang
Cong Yan
Haotian Cui
J. Inala
Colin B. Clement
Nan Duan
Jianfeng Gao
ELM
12
34
0
17 Nov 2022
CodePAD: Sequence-based Code Generation with Pushdown Automaton
CodePAD: Sequence-based Code Generation with Pushdown Automaton
Yihong Dong
Xue Jiang
Yuchen Liu
Ge Li
Zhi Jin
8
6
0
02 Nov 2022
Out of the BLEU: how should we assess quality of the Code Generation
  models?
Out of the BLEU: how should we assess quality of the Code Generation models?
Mikhail Evtikhiev
Egor Bogomolov
Yaroslav Sokolov
T. Bryksin
ALM
24
86
0
05 Aug 2022
InCoder: A Generative Model for Code Infilling and Synthesis
InCoder: A Generative Model for Code Infilling and Synthesis
Daniel Fried
Armen Aghajanyan
Jessy Lin
Sida I. Wang
Eric Wallace
Freda Shi
Ruiqi Zhong
Wen-tau Yih
Luke Zettlemoyer
M. Lewis
SyDa
22
609
0
12 Apr 2022
CodeGen: An Open Large Language Model for Code with Multi-Turn Program
  Synthesis
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Erik Nijkamp
Bo Pang
Hiroaki Hayashi
Lifu Tu
Haiquan Wang
Yingbo Zhou
Silvio Savarese
Caiming Xiong
ELM
13
961
0
25 Mar 2022
Code Generation for Unknown Libraries via Reading API Documentations
Code Generation for Unknown Libraries via Reading API Documentations
Koki Washio
Yusuke Miyao
11
3
0
16 Feb 2022
A Survey on Artificial Intelligence for Source Code: A Dialogue Systems
  Perspective
A Survey on Artificial Intelligence for Source Code: A Dialogue Systems Perspective
Erfan Al-Hossami
Samira Shaikh
17
6
0
10 Feb 2022
Training and Evaluating a Jupyter Notebook Data Science Assistant
Training and Evaluating a Jupyter Notebook Data Science Assistant
Shubham Chandel
Colin B. Clement
Guillermo Serrato
Neel Sundaresan
32
43
0
30 Jan 2022
Lyra: A Benchmark for Turducken-Style Code Generation
Lyra: A Benchmark for Turducken-Style Code Generation
Qingyuan Liang
Zeyu Sun
Qihao Zhu
Wenjie Zhang
Lian Yu
Yingfei Xiong
Lu Zhang
11
10
0
27 Aug 2021
Natural Language-Guided Programming
Natural Language-Guided Programming
Geert Heyman
Rafael Huysegems
P. Justen
Tom Van Cutsem
10
12
0
11 Aug 2021
Reading StackOverflow Encourages Cheating: Adding Question Text Improves
  Extractive Code Generation
Reading StackOverflow Encourages Cheating: Adding Question Text Improves Extractive Code Generation
Gabriel Orlanski
Alex Gittens
23
17
0
08 Jun 2021
HAConvGNN: Hierarchical Attention Based Convolutional Graph Neural
  Network for Code Documentation Generation in Jupyter Notebooks
HAConvGNN: Hierarchical Attention Based Convolutional Graph Neural Network for Code Documentation Generation in Jupyter Notebooks
Xuye Liu
Dakuo Wang
A. Wang
Yufang Hou
Lingfei Wu
14
21
0
31 Mar 2021
Documentation Matters: Human-Centered AI System to Assist Data Science
  Code Documentation in Computational Notebooks
Documentation Matters: Human-Centered AI System to Assist Data Science Code Documentation in Computational Notebooks
A. Wang
Dakuo Wang
Jaimie Drozdal
Michael J. Muller
Soya Park
Justin D. Weisz
Xuye Liu
Lingfei Wu
Casey Dugan
36
63
0
24 Feb 2021
From Bag of Sentences to Document: Distantly Supervised Relation
  Extraction via Machine Reading Comprehension
From Bag of Sentences to Document: Distantly Supervised Relation Extraction via Machine Reading Comprehension
Lingyong Yan
Xianpei Han
Le Sun
Liu Fangchao
Ning Bian
13
2
0
08 Dec 2020
Adversarial Training for Code Retrieval with Question-Description
  Relevance Regularization
Adversarial Training for Code Retrieval with Question-Description Relevance Regularization
Jie Zhao
Huan Sun
10
5
0
19 Oct 2020
Code to Comment "Translation": Data, Metrics, Baselining & Evaluation
Code to Comment "Translation": Data, Metrics, Baselining & Evaluation
David Gros
Hariharan Sezhiyan
Prem Devanbu
Zhou Yu
17
68
0
03 Oct 2020
CORAL: COde RepresentAtion Learning with Weakly-Supervised Transformers
  for Analyzing Data Analysis
CORAL: COde RepresentAtion Learning with Weakly-Supervised Transformers for Analyzing Data Analysis
Ashley Ge Zhang
Michael Merrill
Yang Liu
Jeffrey Heer
Tim Althoff
ViT
14
13
0
28 Aug 2020
12
Next