Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03016
Cited By
Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?
7 October 2019
S. Du
Sham Kakade
Ruosong Wang
Lin F. Yang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?"
50 / 152 papers shown
Title
Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation
Daniel Vial
Advait Parulekar
Sanjay Shakkottai
R. Srikant
42
15
0
04 May 2021
Learning Good State and Action Representations via Tensor Decomposition
Chengzhuo Ni
Yaqi Duan
M. Dahleh
Anru R. Zhang
Mengdi Wang
26
7
0
03 May 2021
Linear Systems can be Hard to Learn
Anastasios Tsiamis
George J. Pappas
14
40
0
02 Apr 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
32
52
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Paria Rashidinejad
Banghua Zhu
Cong Ma
Jiantao Jiao
Stuart J. Russell
OffRL
30
277
0
22 Mar 2021
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
38
188
0
19 Mar 2021
On The Effect of Auxiliary Tasks on Representation Dynamics
Clare Lyle
Mark Rowland
Georg Ostrovski
Will Dabney
34
69
0
25 Feb 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
102
78
0
14 Feb 2021
On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function
Gellert Weisz
P. Amortila
Barnabás Janzer
Yasin Abbasi-Yadkori
Nan Jiang
Csaba Szepesvári
OffRL
14
20
0
03 Feb 2021
Fast Rates for the Regret of Offline Reinforcement Learning
Yichun Hu
Nathan Kallus
Masatoshi Uehara
OffRL
13
30
0
31 Jan 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
36
0
29 Jan 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost
Minbo Gao
Tianle Xie
S. Du
Lin F. Yang
36
45
0
02 Jan 2021
When Is Generalizable Reinforcement Learning Tractable?
Dhruv Malik
Yuanzhi Li
Pradeep Ravikumar
OffRL
86
24
0
01 Jan 2021
Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients
Chris Cundy
Rishi Desai
Stefano Ermon
OffRL
33
4
0
30 Dec 2020
Towards Continual Reinforcement Learning: A Review and Perspectives
Khimya Khetarpal
Matthew D Riemer
Irina Rish
Doina Precup
CLL
OffRL
51
311
0
25 Dec 2020
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
19
203
0
15 Dec 2020
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
26
71
0
14 Dec 2020
Logarithmic Regret for Reinforcement Learning with Linear Function Approximation
Jiafan He
Dongruo Zhou
Quanquan Gu
17
92
0
23 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
What are the Statistical Limits of Offline RL with Linear Function Approximation?
Ruosong Wang
Dean Phillips Foster
Sham Kakade
OffRL
11
158
0
22 Oct 2020
Instance-Dependent Complexity of Contextual Bandits and Reinforcement Learning: A Disagreement-Based Perspective
Dylan J. Foster
Alexander Rakhlin
D. Simchi-Levi
Yunzong Xu
27
75
0
07 Oct 2020
Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions
Gellert Weisz
P. Amortila
Csaba Szepesvári
OffRL
19
80
0
03 Oct 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
12
103
0
28 Sep 2020
Latent Representation Prediction Networks
Hlynur Davíð Hlynsson
Merlin Schuler
Robin Schiewer
Tobias Glasmachers
Laurenz Wiskott
8
1
0
20 Sep 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
22
64
0
18 Aug 2020
On the Sample Complexity of Reinforcement Learning with Policy Space Generalization
Wenlong Mou
Zheng Wen
Xi Chen
14
10
0
17 Aug 2020
Efficient Planning in Large MDPs with Weak Linear Function Approximation
R. Shariff
Csaba Szepesvári
39
22
0
13 Jul 2020
Extracting Latent State Representations with Linear Dynamics from Rich Observations
Abraham Frandsen
Rong Ge
6
2
0
29 Jun 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
30
133
0
23 Jun 2020
Towards Tractable Optimism in Model-Based Reinforcement Learning
Aldo Pacchiano
Philip J. Ball
Jack Parker-Holder
K. Choromanski
Stephen J. Roberts
OffRL
8
12
0
21 Jun 2020
On Reward-Free Reinforcement Learning with Linear Function Approximation
Ruosong Wang
S. Du
Lin F. Yang
Ruslan Salakhutdinov
OffRL
27
105
0
19 Jun 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
41
223
0
18 Jun 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
43
59
0
16 Jun 2020
Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?
Ruosong Wang
S. Du
Lin F. Yang
Sham Kakade
OffRL
10
52
0
01 May 2020
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
GP
OffRL
75
1,315
0
15 Apr 2020
DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction
Aviral Kumar
Abhishek Gupta
Sergey Levine
OffRL
16
100
0
16 Mar 2020
Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning
Fei Feng
Ruosong Wang
W. Yin
S. Du
Lin F. Yang
OffRL
SSL
30
7
0
15 Mar 2020
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization
Dongsheng Ding
Xiaohan Wei
Zhuoran Yang
Zhaoran Wang
M. Jovanović
20
159
0
01 Mar 2020
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette
A. Lazaric
Mykel Kochenderfer
Emma Brunskill
OffRL
17
221
0
29 Feb 2020
Agnostic Q-learning with Function Approximation in Deterministic Systems: Tight Bounds on Approximation Error and Sample Complexity
S. Du
J. Lee
G. Mahajan
Ruosong Wang
10
37
0
17 Feb 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
39
124
0
17 Feb 2020
Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles
Dylan J. Foster
Alexander Rakhlin
6
205
0
12 Feb 2020
Efficient and Robust Algorithms for Adversarial Linear Contextual Bandits
Gergely Neu
Julia Olkhovskaya
16
44
0
01 Feb 2020
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
13
277
0
12 Dec 2019
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
135
135
0
09 Dec 2019
Comments on the Du-Kakade-Wang-Yang Lower Bounds
Benjamin Van Roy
Shi Dong
6
38
0
18 Nov 2019
Learning with Good Feature Representations in Bandits and in RL with a Generative Model
Tor Lattimore
Csaba Szepesvári
Gellert Weisz
OffRL
14
168
0
18 Nov 2019
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration
Andrea Zanette
David Brandfonbrener
Emma Brunskill
Matteo Pirotta
A. Lazaric
17
126
0
01 Nov 2019
Previous
1
2
3
4
Next