ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.03624
  4. Cited By
SmoothFool: An Efficient Framework for Computing Smooth Adversarial
  Perturbations

SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations

8 October 2019
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
J. Dawson
Nasser M. Nasrabadi
    AAML
ArXivPDFHTML

Papers citing "SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations"

5 / 5 papers shown
Title
How Deep Learning Sees the World: A Survey on Adversarial Attacks &
  Defenses
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
52
51
0
18 May 2023
Hide and Seek: on the Stealthiness of Attacks against Deep Learning
  Systems
Hide and Seek: on the Stealthiness of Attacks against Deep Learning Systems
Zeyan Liu
Fengjun Li
Jingqiang Lin
Zhu Li
Bo Luo
AAML
15
1
0
31 May 2022
AdvDrop: Adversarial Attack to DNNs by Dropping Information
AdvDrop: Adversarial Attack to DNNs by Dropping Information
Ranjie Duan
YueFeng Chen
Dantong Niu
Yun Yang
•. A. K. Qin
Yuan He
AAML
24
89
0
20 Aug 2021
SuperMix: Supervising the Mixing Data Augmentation
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
Nasser M. Nasrabadi
19
98
0
10 Mar 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1