Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.04091
Cited By
Learning with minibatch Wasserstein : asymptotic and gradient properties
9 October 2019
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning with minibatch Wasserstein : asymptotic and gradient properties"
11 / 11 papers shown
Title
Model alignment using inter-modal bridges
Ali Gholamzadeh
Noor Sajid
93
0
0
18 May 2025
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
68
3
0
14 Mar 2025
Partial Distribution Matching via Partial Wasserstein Adversarial Networks
Zi-Ming Wang
Nan Xue
Ling Lei
Rebecka Jörnsten
Gui-Song Xia
OOD
76
0
0
16 Sep 2024
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
118
0
0
07 Jun 2024
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
41
112
0
14 May 2019
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
45
524
0
18 Oct 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
122
2,133
0
01 Mar 2018
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
108
417
0
01 Jul 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
119
9,509
0
31 Mar 2017
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
26
159
0
10 Nov 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
118
4,210
0
04 Jun 2013
1