ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.04814
  4. Cited By
ErrorNet: Learning error representations from limited data to improve
  vascular segmentation

ErrorNet: Learning error representations from limited data to improve vascular segmentation

10 October 2019
Nima Tajbakhsh
B. Lai
Shilpa P. Ananth
Xiaowei Ding
    MedIm
ArXivPDFHTML

Papers citing "ErrorNet: Learning error representations from limited data to improve vascular segmentation"

4 / 4 papers shown
Title
R2U++: A Multiscale Recurrent Residual U-Net with Dense Skip Connections
  for Medical Image Segmentation
R2U++: A Multiscale Recurrent Residual U-Net with Dense Skip Connections for Medical Image Segmentation
Mehreen Mubashar
Hazrat Ali
C. Grönlund
Shoaib Azmat
SSeg
21
66
0
03 Jun 2022
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in
  Image Segmentation
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
Zongwei Zhou
M. R. Siddiquee
Nima Tajbakhsh
Jianming Liang
SSeg
22
2,565
0
11 Dec 2019
Embracing Imperfect Datasets: A Review of Deep Learning Solutions for
  Medical Image Segmentation
Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation
Nima Tajbakhsh
Laura Jeyaseelan
Q. Li
J. Chiang
Zhihao Wu
Xiaowei Ding
16
750
0
27 Aug 2019
DeepNAT: Deep Convolutional Neural Network for Segmenting Neuroanatomy
DeepNAT: Deep Convolutional Neural Network for Segmenting Neuroanatomy
Christian Wachinger
M. Reuter
T. Klein
3DV
29
330
0
27 Feb 2017
1