ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05534
57
16
v1v2v3v4 (latest)

Spectral embedding of weighted graphs

12 October 2019
Ian Gallagher
Andrew Jones
A. Bertiger
Carey Priebe
Patrick Rubin-Delanchy
ArXiv (abs)PDFHTML
Abstract

When analyzing weighted networks using spectral embedding, a judicious transformation of the edge weights may produce better results. To formalize this idea, we consider the asymptotic behavior of spectral embedding for different edge-weight representations, under a generic low rank model. We measure the quality of different embeddings -- which can be on entirely different scales -- by how easy it is to distinguish communities, in an information-theoretic sense. For common types of weighted graphs, such as count networks or p-value networks, we find that transformations such as tempering or thresholding can be highly beneficial, both in theory and in practice.

View on arXiv
Comments on this paper