ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05534
59
16
v1v2v3v4 (latest)

Spectral embedding of weighted graphs

12 October 2019
Ian Gallagher
Andrew Jones
A. Bertiger
Carey Priebe
Patrick Rubin-Delanchy
ArXiv (abs)PDFHTML
Abstract

This paper concerns the statistical analysis of a weighted graph through spectral embedding. Under a latent position model in which the expected adjacency matrix has low rank, we prove uniform consistency and a central limit theorem for the embedded nodes, treated as latent position estimates. In the special case of a weighted stochastic block model, this result implies that the embedding follows a Gaussian mixture model with each component representing a community. We exploit this to formally evaluate different weight representations of the graph using Chernoff information. For example, in a network anomaly detection problem where we observe a p-value on each edge, we recommend against directly embedding the matrix of p-values, and instead using threshold or log p-values, depending on network sparsity and signal strength.

View on arXiv
Comments on this paper