Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06093
Cited By
Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks
14 October 2019
Jy-yong Sohn
Dong-Jun Han
Beongjun Choi
Jaekyun Moon
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks"
7 / 7 papers shown
Title
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
27
0
0
23 May 2023
FedREP: A Byzantine-Robust, Communication-Efficient and Privacy-Preserving Framework for Federated Learning
Yi-Rui Yang
Kun Wang
Wulu Li
FedML
42
3
0
09 Mar 2023
FedCut: A Spectral Analysis Framework for Reliable Detection of Byzantine Colluders
Hanlin Gu
Lixin Fan
Xingxing Tang
Qiang Yang
AAML
FedML
22
1
0
24 Nov 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
24
20
0
12 Feb 2022
SignSGD: Fault-Tolerance to Blind and Byzantine Adversaries
J. Akoun
S. Meyer
AAML
FedML
22
1
0
04 Feb 2022
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
41
71
0
27 Oct 2021
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
1