Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.09103
Cited By
Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
17 October 2019
Jintao Ke
Xiaoran Qin
Hai Yang
Zhengfei Zheng
Zheng Zhu
Jieping Ye
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network"
5 / 5 papers shown
Title
UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method
Peng Xie
Minbo Ma
Bin Wang
Junbo Zhang
Tianrui Li
24
0
0
08 Sep 2024
Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction
Xinke Jiang
Dingyi Zhuang
Xianghui Zhang
Hao Chen
Jiayuan Luo
Xiaowei Gao
11
20
0
16 Jun 2023
Fairness-enhancing deep learning for ride-hailing demand prediction
Yunhan Zheng
Qingyi Wang
Dingyi Zhuang
Shenhao Wang
Jinhua Zhao
31
11
0
10 Mar 2023
A Baselined Gated Attention Recurrent Network for Request Prediction in Ridesharing
Jingran Shen
Nikos Tziritas
Georgios Theodoropoulos
AI4TS
15
7
0
11 Jul 2022
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1