ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10923
  4. Cited By
ERM and RERM are optimal estimators for regression problems when
  malicious outliers corrupt the labels

ERM and RERM are optimal estimators for regression problems when malicious outliers corrupt the labels

24 October 2019
Chinot Geoffrey
ArXivPDFHTML

Papers citing "ERM and RERM are optimal estimators for regression problems when malicious outliers corrupt the labels"

5 / 5 papers shown
Title
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
27
4
0
24 Aug 2022
Robust and Sparse Estimation of Linear Regression Coefficients with
  Heavy-tailed Noises and Covariates
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Takeyuki Sasai
18
4
0
15 Jun 2022
Kalman Filtering with Adversarial Corruptions
Kalman Filtering with Adversarial Corruptions
Sitan Chen
Frederic Koehler
Ankur Moitra
Morris Yau
AAML
27
10
0
11 Nov 2021
All-In-One Robust Estimator of the Gaussian Mean
All-In-One Robust Estimator of the Gaussian Mean
A. Dalalyan
A. Minasyan
18
25
0
04 Feb 2020
Robust high dimensional learning for Lipschitz and convex losses
Robust high dimensional learning for Lipschitz and convex losses
Geoffrey Chinot
Guillaume Lecué
M. Lerasle
23
18
0
10 May 2019
1