ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11090
17
3

Emotion Generation and Recognition: A StarGAN Approach

12 October 2019
A. Banerjee
D. Kollias
    CVBM
    SLR
ArXivPDFHTML
Abstract

The main idea of this ISO is to use StarGAN (A type of GAN model) to perform training and testing on an emotion dataset resulting in a emotion recognition which can be generated by the valence arousal score of the 7 basic expressions. We have created an entirely new dataset consisting of 4K videos. This dataset consists of all the basic 7 types of emotions: Happy, Sad, Angry, Surprised, Fear, Disgust, Neutral. We have performed face detection and alignment followed by annotating basic valence arousal values to the frames/images in the dataset depending on the emotions manually. Then the existing StarGAN model is trained on our created dataset after which some manual subjects were chosen to test the efficiency of the trained StarGAN model.

View on arXiv
Comments on this paper