ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13413
  4. Cited By
Feature relevance quantification in explainable AI: A causal problem

Feature relevance quantification in explainable AI: A causal problem

29 October 2019
Dominik Janzing
Lenon Minorics
Patrick Blobaum
    FAtt
    CML
ArXivPDFHTML

Papers citing "Feature relevance quantification in explainable AI: A causal problem"

11 / 61 papers shown
Title
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
25
88
0
27 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
22
396
0
19 Oct 2020
On the Tractability of SHAP Explanations
On the Tractability of SHAP Explanations
Mathias Niepert
A. Lykov
Maximilian Schleich
Dan Suciu
FAtt
TDI
11
260
0
18 Sep 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine
  Learning Models
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
31
135
0
08 Jul 2020
Model Explanations with Differential Privacy
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A
  Top-Down Approach
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top-Down Approach
A. Moawad
E. Islam
Namdoo Kim
R. Vijayagopal
A. Rousseau
Wei Biao Wu
23
5
0
15 Jun 2020
Model-agnostic Feature Importance and Effects with Dependent Features --
  A Conditional Subgroup Approach
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
31
77
0
08 Jun 2020
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
16
180
0
14 Oct 2019
Technical Report: Partial Dependence through Stratification
Technical Report: Partial Dependence through Stratification
T. Parr
James D. Wilson
11
2
0
15 Jul 2019
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
16
606
0
25 Mar 2019
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
326
5,847
0
08 Jul 2016
Previous
12