Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.13598
Cited By
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
30 October 2019
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization"
35 / 35 papers shown
Title
Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel Training
Hiroki Naganuma
Xinzhi Zhang
Man-Chung Yue
Ioannis Mitliagkas
Philipp A. Witte
Russell J. Hewett
Yin Tat Lee
63
0
0
25 Apr 2025
A New Theoretical Perspective on Data Heterogeneity in Federated Optimization
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
30
1
0
22 Jul 2024
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
23
4
0
26 Oct 2023
Revolutionizing Wireless Networks with Federated Learning: A Comprehensive Review
Sajjad Emdadi Mahdimahalleh
AI4CE
28
0
0
01 Aug 2023
Taming Resource Heterogeneity In Distributed ML Training With Dynamic Batching
S. Tyagi
Prateek Sharma
16
22
0
20 May 2023
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
35
1
0
20 Feb 2023
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
Han Wang
A. Mitra
Hamed Hassani
George J. Pappas
James Anderson
FedML
26
21
0
04 Feb 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Communication-Efficient Federated Learning for Heterogeneous Edge Devices Based on Adaptive Gradient Quantization
Heting Liu
Fang He
Guohong Cao
FedML
MQ
18
24
0
16 Dec 2022
Communication-Efficient Local SGD with Age-Based Worker Selection
Feng Zhu
Jingjing Zhang
Xin Eric Wang
22
1
0
31 Oct 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
STSyn: Speeding Up Local SGD with Straggler-Tolerant Synchronization
Feng Zhu
Jingjing Zhang
Xin Eric Wang
26
3
0
06 Oct 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
27
12
0
10 Aug 2022
Towards Communication-efficient Vertical Federated Learning Training via Cache-enabled Local Updates
Fangcheng Fu
Xupeng Miao
Jiawei Jiang
Huanran Xue
Bin Cui
FedML
22
21
0
29 Jul 2022
Confederated Learning: Federated Learning with Decentralized Edge Servers
Bin Wang
Jun Fang
Hongbin Li
Xiaojun Yuan
Qing Ling
FedML
21
23
0
30 May 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
26
75
0
27 May 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
27
3
0
22 Mar 2022
A Local Convergence Theory for the Stochastic Gradient Descent Method in Non-Convex Optimization With Non-isolated Local Minima
Tae-Eon Ko
Xiantao Li
20
2
0
21 Mar 2022
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
32
71
0
27 Oct 2021
BAGUA: Scaling up Distributed Learning with System Relaxations
Shaoduo Gan
Xiangru Lian
Rui Wang
Jianbin Chang
Chengjun Liu
...
Jiawei Jiang
Binhang Yuan
Sen Yang
Ji Liu
Ce Zhang
23
30
0
03 Jul 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
30
288
0
11 Jun 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
27
58
0
25 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
28
139
0
07 Dec 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
29
57
0
17 Nov 2020
Demystifying Why Local Aggregation Helps: Convergence Analysis of Hierarchical SGD
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
28
51
0
24 Oct 2020
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
Qing Ye
Yuhao Zhou
Mingjia Shi
Yanan Sun
Jiancheng Lv
14
11
0
23 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
14
1,295
0
15 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
30
271
0
02 Jul 2020
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
24
42
0
05 May 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
22
12
0
06 Mar 2020
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
34
253
0
18 Feb 2020
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
19
265
0
31 Oct 2019
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
136
1,198
0
16 Aug 2016
1