ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00713
22
16

Visual Relationship Detection with Relative Location Mining

2 November 2019
Hao Zhou
Chongyang Zhang
Chuanping Hu
    ObjD
ArXivPDFHTML
Abstract

Visual relationship detection, as a challenging task used to find and distinguish the interactions between object pairs in one image, has received much attention recently. In this work, we propose a novel visual relationship detection framework by deeply mining and utilizing relative location of object-pair in every stage of the procedure. In both the stages, relative location information of each object-pair is abstracted and encoded as auxiliary feature to improve the distinguishing capability of object-pairs proposing and predicate recognition, respectively; Moreover, one Gated Graph Neural Network(GGNN) is introduced to mine and measure the relevance of predicates using relative location. With the location-based GGNN, those non-exclusive predicates with similar spatial position can be clustered firstly and then be smoothed with close classification scores, thus the accuracy of top nnn recall can be increased further. Experiments on two widely used datasets VRD and VG show that, with the deeply mining and exploiting of relative location information, our proposed model significantly outperforms the current state-of-the-art.

View on arXiv
Comments on this paper