Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.01921
Cited By
DLA: Dense-Layer-Analysis for Adversarial Example Detection
5 November 2019
Philip Sperl
Ching-yu Kao
Peng Chen
Konstantin Böttinger
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DLA: Dense-Layer-Analysis for Adversarial Example Detection"
8 / 8 papers shown
Title
AdvCheck: Characterizing Adversarial Examples via Local Gradient Checking
Ruoxi Chen
Haibo Jin
Jinyin Chen
Haibin Zheng
AAML
49
0
0
25 Mar 2023
Adversarial Example Detection in Deployed Tree Ensembles
Laurens Devos
Wannes Meert
Jesse Davis
AAML
44
1
0
27 Jun 2022
What You See is Not What the Network Infers: Detecting Adversarial Examples Based on Semantic Contradiction
Yijun Yang
Ruiyuan Gao
Yu Li
Qiuxia Lai
Qiang Xu
GAN
AAML
106
20
0
24 Jan 2022
Feature-Filter: Detecting Adversarial Examples through Filtering off Recessive Features
Hui Liu
Bo Zhao
Minzhi Ji
Yuefeng Peng
Jiabao Guo
Peng Liu
AAML
56
2
0
19 Jul 2021
Evading Adversarial Example Detection Defenses with Orthogonal Projected Gradient Descent
Oliver Bryniarski
Nabeel Hingun
Pedro Pachuca
Vincent Wang
Nicholas Carlini
AAML
82
37
0
28 Jun 2021
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart
Tianyu Pang
Huishuai Zhang
Di He
Yinpeng Dong
Hang Su
Wei Chen
Jun Zhu
Tie-Yan Liu
AAML
45
18
0
31 May 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
87
9
0
31 May 2021
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
45
3
0
07 Aug 2020
1