ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.03599
17
82

CenterFace: Joint Face Detection and Alignment Using Face as Point

9 November 2019
Yuanyuan Xu
Wan Yan
Haixin Sun
Gen-ke Yang
Jiliang Luo
    CVBM
    3DPC
ArXivPDFHTML
Abstract

Face detection and alignment in unconstrained environment is always deployed on edge devices which have limited memory storage and low computing power. This paper proposes a one-stage method named CenterFace to simultaneously predict facial box and landmark location with real-time speed and high accuracy. The proposed method also belongs to the anchor free category. This is achieved by: (a) learning face existing possibility by the semantic maps, (b) learning bounding box, offsets and five landmarks for each position that potentially contains a face. Specifically, the method can run in real-time on a single CPU core and 200 FPS using NVIDIA 2080TI for VGA-resolution images, and can simultaneously achieve superior accuracy (WIDER FACE Val/Test-Easy: 0.935/0.932, Medium: 0.924/0.921, Hard: 0.875/0.873 and FDDB discontinuous: 0.980, continuous: 0.732). A demo of CenterFace can be available at https://github.com/Star-Clouds/CenterFace.

View on arXiv
Comments on this paper