ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05650
  4. Cited By
Extracting 2D weak labels from volume labels using multiple instance
  learning in CT hemorrhage detection

Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection

13 November 2019
Samuel W. Remedios
Zihao Wu
Camilo Bermudez
Cailey I. Kerley
Snehashis Roy
Mayur B. Patel
J. Butman
Bennett A. Landman
Dzung L. Pham
ArXiv (abs)PDFHTML

Papers citing "Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection"

2 / 2 papers shown
Title
Hyperbolic Secant representation of the logistic function: Application
  to probabilistic Multiple Instance Learning for CT intracranial hemorrhage
  detection
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection
Francisco M. Castro-Macías
Pablo Morales-Álvarez
Yunan Wu
Rafael Molina
Aggelos K. Katsaggelos
28
2
0
21 Mar 2024
Automatic Estimation of Ulcerative Colitis Severity from Endoscopy
  Videos using Ordinal Multi-Instance Learning
Automatic Estimation of Ulcerative Colitis Severity from Endoscopy Videos using Ordinal Multi-Instance Learning
Evan Schwab
G. O. Cula
K. Standish
Stephen S. F. Yip
A. Stojmirović
Louis R. Ghanem
C. Chehoud
72
13
0
29 Sep 2021
1