ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05911
  4. Cited By
Recent Advances in Algorithmic High-Dimensional Robust Statistics

Recent Advances in Algorithmic High-Dimensional Robust Statistics

14 November 2019
Ilias Diakonikolas
D. Kane
    OOD
ArXiv (abs)PDFHTML

Papers citing "Recent Advances in Algorithmic High-Dimensional Robust Statistics"

50 / 146 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
95
0
0
28 Apr 2025
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
181
0
0
01 Apr 2025
Sample-Optimal Private Regression in Polynomial Time
Sample-Optimal Private Regression in Polynomial Time
Prashanti Anderson
Ainesh Bakshi
Mahbod Majid
Stefan Tiegel
41
0
0
31 Mar 2025
Geometric Median (GM) Matching for Robust Data Pruning
Geometric Median (GM) Matching for Robust Data Pruning
Anish Acharya
Inderjit S Dhillon
Sujay Sanghavi
AAML
139
0
0
20 Jan 2025
Optimal Rates for Robust Stochastic Convex Optimization
Optimal Rates for Robust Stochastic Convex Optimization
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
129
0
0
15 Dec 2024
Robust high-dimensional Gaussian and bootstrap approximations for
  trimmed sample means
Robust high-dimensional Gaussian and bootstrap approximations for trimmed sample means
Lucas Resende
86
1
0
29 Oct 2024
Perturb-and-Project: Differentially Private Similarities and Marginals
Perturb-and-Project: Differentially Private Similarities and Marginals
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Vahab Mirrokni
Peilin Zhong
81
0
0
07 Jun 2024
A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph
  Clustering
A Near-Linear Time Approximation Algorithm for Beyond-Worst-Case Graph Clustering
Vincent Cohen-Addad
Tommaso dÓrsi
Aida Mousavifar
91
1
0
07 Jun 2024
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Surbhi Goel
Abhishek Shetty
Konstantinos Stavropoulos
Arsen Vasilyan
OOD
83
3
0
04 Jun 2024
Robust Kernel Hypothesis Testing under Data Corruption
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
103
4
0
30 May 2024
Learning from Uncertain Data: From Possible Worlds to Possible Models
Learning from Uncertain Data: From Possible Worlds to Possible Models
Jiongli Zhu
Su Feng
Boris Glavic
Babak Salimi
68
1
0
28 May 2024
Data Poisoning Attacks on Off-Policy Policy Evaluation Methods
Data Poisoning Attacks on Off-Policy Policy Evaluation Methods
Elita Lobo
Harvineet Singh
Marek Petrik
Cynthia Rudin
Himabindu Lakkaraju
73
3
0
06 Apr 2024
Robust Second-Order Nonconvex Optimization and Its Application to Low
  Rank Matrix Sensing
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing
Shuyao Li
Yu Cheng
Ilias Diakonikolas
Jelena Diakonikolas
Rong Ge
Stephen J. Wright
71
2
0
12 Mar 2024
Corruption Robust Offline Reinforcement Learning with Human Feedback
Corruption Robust Offline Reinforcement Learning with Human Feedback
Debmalya Mandal
Andi Nika
Parameswaran Kamalaruban
Adish Singla
Goran Radanović
OffRL
93
11
0
09 Feb 2024
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
Xuefeng Du
Zhen Fang
Ilias Diakonikolas
Yixuan Li
OODD
87
29
0
05 Feb 2024
Attacking Byzantine Robust Aggregation in High Dimensions
Attacking Byzantine Robust Aggregation in High Dimensions
Sarthak Choudhary
Aashish Kolluri
Prateek Saxena
AAML
75
1
0
22 Dec 2023
Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
  Estimation and Linear Regression
Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression
Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
Thanasis Pittas
97
2
0
04 Dec 2023
A Combinatorial Approach to Robust PCA
A Combinatorial Approach to Robust PCA
Weihao Kong
Mingda Qiao
Rajat Sen
48
0
0
28 Nov 2023
Testing with Non-identically Distributed Samples
Testing with Non-identically Distributed Samples
Shivam Garg
Chirag Pabbaraju
Kirankumar Shiragur
Gregory Valiant
55
0
0
19 Nov 2023
Outlier-Robust Wasserstein DRO
Outlier-Robust Wasserstein DRO
Sloan Nietert
Ziv Goldfeld
Soroosh Shafiee
81
11
0
09 Nov 2023
Statistical Barriers to Affine-equivariant Estimation
Statistical Barriers to Affine-equivariant Estimation
Zihao Chen
Yeshwanth Cherapanamjeri
84
0
0
16 Oct 2023
Robust Stochastic Optimization via Gradient Quantile Clipping
Robust Stochastic Optimization via Gradient Quantile Clipping
Ibrahim Merad
Stéphane Gaïffas
77
2
0
29 Sep 2023
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
Ankit Pratap Singh
Namrata Vaswani
94
0
0
25 Sep 2023
Noisy Computing of the $\mathsf{OR}$ and $\mathsf{MAX}$ Functions
Noisy Computing of the OR\mathsf{OR}OR and MAX\mathsf{MAX}MAX Functions
Banghua Zhu
Ziao Wang
Nadim Ghaddar
Jiantao Jiao
Lele Wang
61
3
0
07 Sep 2023
The Full Landscape of Robust Mean Testing: Sharp Separations between
  Oblivious and Adaptive Contamination
The Full Landscape of Robust Mean Testing: Sharp Separations between Oblivious and Adaptive Contamination
C. Canonne
Samuel B. Hopkins
Jungshian Li
Allen Liu
Shyam Narayanan
AAML
75
5
0
18 Jul 2023
The Geometric Median and Applications to Robust Mean Estimation
The Geometric Median and Applications to Robust Mean Estimation
Stanislav Minsker
Nate Strawn
64
4
0
06 Jul 2023
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold
  Functions with Nasty Noise
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
Shiwei Zeng
Jie Shen
57
1
0
01 Jun 2023
Robust Nonparametric Regression under Poisoning Attack
Robust Nonparametric Regression under Poisoning Attack
Puning Zhao
Z. Wan
AAML
80
10
0
26 May 2023
Robust Sparse Mean Estimation via Incremental Learning
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
Salar Fattahi
Wei Hu
67
0
0
24 May 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedMLAAML
92
0
0
23 May 2023
Computationally Efficient and Statistically Optimal Robust
  High-Dimensional Linear Regression
Computationally Efficient and Statistically Optimal Robust High-Dimensional Linear Regression
Yinan Shen
Jingyang Li
Jian-Feng Cai
Dong Xia
59
1
0
10 May 2023
Learning Mixtures of Gaussians with Censored Data
Learning Mixtures of Gaussians with Censored Data
W. Tai
Bryon Aragam
41
1
0
06 May 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
90
10
0
04 May 2023
A Spectral Algorithm for List-Decodable Covariance Estimation in
  Relative Frobenius Norm
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
Thanasis Pittas
98
1
0
01 May 2023
Robust and differentially private stochastic linear bandits
Robust and differentially private stochastic linear bandits
Vasileios Charisopoulos
Hossein Esfandiari
Vahab Mirrokni
FedML
84
1
0
23 Apr 2023
The Dataset Multiplicity Problem: How Unreliable Data Impacts
  Predictions
The Dataset Multiplicity Problem: How Unreliable Data Impacts Predictions
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
74
15
0
20 Apr 2023
On Private and Robust Bandits
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
76
7
0
06 Feb 2023
Robust Estimation under the Wasserstein Distance
Robust Estimation under the Wasserstein Distance
Sloan Nietert
Rachel Cummings
Ziv Goldfeld
93
5
0
02 Feb 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
73
9
0
30 Jan 2023
Robust empirical risk minimization via Newton's method
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
65
2
0
30 Jan 2023
Statistically Optimal Robust Mean and Covariance Estimation for
  Anisotropic Gaussians
Statistically Optimal Robust Mean and Covariance Estimation for Anisotropic Gaussians
A. Minasyan
Nikita Zhivotovskiy
61
9
0
21 Jan 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
95
21
0
11 Jan 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
116
30
0
03 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
138
0
0
15 Dec 2022
Corruption-tolerant Algorithms for Generalized Linear Models
Corruption-tolerant Algorithms for Generalized Linear Models
B. Mukhoty
Debojyoti Dey
Purushottam Kar
32
1
0
11 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
113
57
0
09 Dec 2022
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
55
12
0
29 Nov 2022
A Characterization of List Learnability
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
75
14
0
07 Nov 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean
  Estimation
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
98
24
0
01 Nov 2022
Is Out-of-Distribution Detection Learnable?
Is Out-of-Distribution Detection Learnable?
Zhen Fang
Yixuan Li
Jie Lu
Jiahua Dong
Bo Han
Feng Liu
OODD
137
133
0
26 Oct 2022
123
Next