ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.06922
  4. Cited By
Benanza: Automatic $μ$Benchmark Generation to Compute "Lower-bound"
  Latency and Inform Optimizations of Deep Learning Models on GPUs

Benanza: Automatic μμμBenchmark Generation to Compute "Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUs

16 November 2019
Cheng-rong Li
Abdul Dakkak
Jinjun Xiong
Wen-mei W. Hwu
ArXivPDFHTML

Papers citing "Benanza: Automatic $μ$Benchmark Generation to Compute "Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUs"

3 / 3 papers shown
Title
Group Fisher Pruning for Practical Network Compression
Group Fisher Pruning for Practical Network Compression
Liyang Liu
Shilong Zhang
Zhanghui Kuang
Aojun Zhou
Jingliang Xue
Xinjiang Wang
Yimin Chen
Wenming Yang
Q. Liao
Wayne Zhang
25
146
0
02 Aug 2021
Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
  with KARMA
Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA
M. Wahib
Haoyu Zhang
Truong Thao Nguyen
Aleksandr Drozd
Jens Domke
Lingqi Zhang
Ryousei Takano
Satoshi Matsuoka
OODD
32
23
0
26 Aug 2020
DLBricks: Composable Benchmark Generation to Reduce Deep Learning
  Benchmarking Effort on CPUs (Extended)
DLBricks: Composable Benchmark Generation to Reduce Deep Learning Benchmarking Effort on CPUs (Extended)
Cheng-rong Li
Abdul Dakkak
Jinjun Xiong
Wen-mei W. Hwu
22
0
0
18 Nov 2019
1