ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.06987
  4. Cited By
Faster AutoAugment: Learning Augmentation Strategies using
  Backpropagation

Faster AutoAugment: Learning Augmentation Strategies using Backpropagation

16 November 2019
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
ArXivPDFHTML

Papers citing "Faster AutoAugment: Learning Augmentation Strategies using Backpropagation"

34 / 34 papers shown
Title
SUMix: Mixup with Semantic and Uncertain Information
SUMix: Mixup with Semantic and Uncertain Information
Huafeng Qin
Xin Jin
Hongyu Zhu
Hongchao Liao
M. El-Yacoubi
Xinbo Gao
UQCV
28
5
0
10 Jul 2024
CAAP: Class-Dependent Automatic Data Augmentation Based On Adaptive
  Policies For Time Series
CAAP: Class-Dependent Automatic Data Augmentation Based On Adaptive Policies For Time Series
Tien-Yu Chang
Hao Dai
Vincent S. Tseng
AI4TS
31
0
0
01 Apr 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
65
5
0
13 Mar 2024
Boosting Semi-Supervised 2D Human Pose Estimation by Revisiting Data Augmentation and Consistency Training
Boosting Semi-Supervised 2D Human Pose Estimation by Revisiting Data Augmentation and Consistency Training
Huayi Zhou
Mukun Luo
Fei Jiang
Yue Ding
Hongtao Lu
Kui Jia
46
0
0
18 Feb 2024
Understanding Test-Time Augmentation
Understanding Test-Time Augmentation
Masanari Kimura
ViT
16
29
0
10 Feb 2024
LatentAugment: Dynamically Optimized Latent Probabilities of Data
  Augmentation
LatentAugment: Dynamically Optimized Latent Probabilities of Data Augmentation
K. Kuriyama
24
1
0
04 May 2023
LA3: Efficient Label-Aware AutoAugment
LA3: Efficient Label-Aware AutoAugment
Mingjun Zhao
Sha Lu
Zixuan Wang
Xiaoli Wang
Di Niu
14
1
0
20 Apr 2023
CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition
CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition
Sumyeong Ahn
Jongwoo Ko
Se-Young Yun
31
30
0
10 Feb 2023
Dynamic Test-Time Augmentation via Differentiable Functions
Dynamic Test-Time Augmentation via Differentiable Functions
Shohei Enomoto
Monikka Roslianna Busto
Takeharu Eda
OOD
35
5
0
09 Dec 2022
Local Magnification for Data and Feature Augmentation
Local Magnification for Data and Feature Augmentation
Kun He
Chang-rui Liu
Stephen Lin
J. Hopcroft
21
2
0
15 Nov 2022
Cold Start Streaming Learning for Deep Networks
Cold Start Streaming Learning for Deep Networks
Cameron R. Wolfe
Anastasios Kyrillidis
CLL
15
2
0
09 Nov 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
Auto Machine Learning for Medical Image Analysis by Unifying the Search
  on Data Augmentation and Neural Architecture
Auto Machine Learning for Medical Image Analysis by Unifying the Search on Data Augmentation and Neural Architecture
Jianwei Zhang
Dong Li
Lituan Wang
Lei Zhang
20
2
0
21 Jul 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
23
39
0
14 Jun 2022
Masked Autoencoders are Robust Data Augmentors
Masked Autoencoders are Robust Data Augmentors
Haohang Xu
Shuangrui Ding
Xiaopeng Zhang
H. Xiong
32
27
0
10 Jun 2022
ReSmooth: Detecting and Utilizing OOD Samples when Training with Data
  Augmentation
ReSmooth: Detecting and Utilizing OOD Samples when Training with Data Augmentation
Chenyang Wang
Junjun Jiang
Xiong Zhou
Xianming Liu
32
3
0
25 May 2022
A Comprehensive Survey of Image Augmentation Techniques for Deep
  Learning
A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
Mingle Xu
Sook Yoon
A. Fuentes
D. Park
VLM
24
396
0
03 May 2022
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Haonan Wang
Jieyu Zhang
Qi Zhu
Wei Huang
30
31
0
11 Apr 2022
Deep AutoAugment
Deep AutoAugment
Yu Zheng
Z. Zhang
Shen Yan
Mi Zhang
ViT
21
26
0
11 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
Teppei Suzuki
ViT
21
48
0
25 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Adversarial Masking for Self-Supervised Learning
Adversarial Masking for Self-Supervised Learning
Yuge Shi
N. Siddharth
Philip H. S. Torr
Adam R. Kosiorek
SSL
56
82
0
31 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
DAAS: Differentiable Architecture and Augmentation Policy Search
DAAS: Differentiable Architecture and Augmentation Policy Search
Xiaoxing Wang
Xiangxiang Chu
Junchi Yan
Xiaokang Yang
24
5
0
30 Sep 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
38
31
0
01 Sep 2021
Adversarial Reinforced Instruction Attacker for Robust Vision-Language
  Navigation
Adversarial Reinforced Instruction Attacker for Robust Vision-Language Navigation
Bingqian Lin
Yi Zhu
Yanxin Long
Xiaodan Liang
QiXiang Ye
Liang Lin
AAML
39
16
0
23 Jul 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mañdziuk
23
60
0
21 Jul 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
25
32
0
09 Apr 2021
Meta Approach to Data Augmentation Optimization
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
32
34
0
14 Jun 2020
Circumventing Outliers of AutoAugment with Knowledge Distillation
Circumventing Outliers of AutoAugment with Knowledge Distillation
Longhui Wei
Anxiang Xiao
Lingxi Xie
Xin Chen
Xiaopeng Zhang
Qi Tian
24
62
0
25 Mar 2020
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
20
1,419
0
02 Aug 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,684
0
09 Mar 2017
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,329
0
05 Nov 2016
RenderGAN: Generating Realistic Labeled Data
RenderGAN: Generating Realistic Labeled Data
Leon Sixt
Benjamin Wild
Tim Landgraf
GAN
158
175
0
04 Nov 2016
1