ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07414
  4. Cited By
Potential Field: Interpretable and Unified Representation for Trajectory
  Prediction

Potential Field: Interpretable and Unified Representation for Trajectory Prediction

18 November 2019
Shan Su
Cheng Peng
Jianbo Shi
Chiho Choi
ArXivPDFHTML

Papers citing "Potential Field: Interpretable and Unified Representation for Trajectory Prediction"

3 / 3 papers shown
Title
Characterizing Structured versus Unstructured Environments based on Pedestrians' and Vehicles' Motion Trajectories
Characterizing Structured versus Unstructured Environments based on Pedestrians' and Vehicles' Motion Trajectories
Mahsa Golchoubian
M. Ghafurian
N. L. Azad
Kerstin Dautenhahn
44
4
0
24 Feb 2025
Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
  and Tracking
Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction and Tracking
Jiachen Li
Hengbo Ma
Zhihao Zhang
Jinning Li
M. Tomizuka
50
68
0
18 Feb 2021
Shared Cross-Modal Trajectory Prediction for Autonomous Driving
Shared Cross-Modal Trajectory Prediction for Autonomous Driving
Chiho Choi
Joon Hee Choi
Srikanth Malla
Jiachen Li
23
65
0
01 Apr 2020
1