Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.08772
Cited By
Understanding Top-k Sparsification in Distributed Deep Learning
20 November 2019
S. Shi
X. Chu
Ka Chun Cheung
Simon See
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Top-k Sparsification in Distributed Deep Learning"
10 / 10 papers shown
Title
Sparsification Under Siege: Defending Against Poisoning Attacks in Communication-Efficient Federated Learning
Zhiyong Jin
Runhua Xu
C. Li
Y. Liu
Jianxin Li
AAML
FedML
37
0
0
30 Apr 2025
Delayed Random Partial Gradient Averaging for Federated Learning
Xinyi Hu
FedML
39
0
0
31 Dec 2024
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Zhe Li
Bicheng Ying
Zidong Liu
Haibo Yang
Haibo Yang
FedML
59
3
0
24 May 2024
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
S. Tyagi
Martin Swany
17
4
0
20 May 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
21
7
0
22 Feb 2023
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
43
59
0
02 Aug 2022
DNN gradient lossless compression: Can GenNorm be the answer?
Zhongzhu Chen
Eduin E. Hernandez
Yu-Chih Huang
Stefano Rini
9
9
0
15 Nov 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
35
54
0
02 Aug 2021
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy Efficient Inference
Ali Hadi Zadeh
Isak Edo
Omar Mohamed Awad
Andreas Moshovos
MQ
9
183
0
08 May 2020
Communication-Efficient Decentralized Learning with Sparsification and Adaptive Peer Selection
Zhenheng Tang
S. Shi
X. Chu
FedML
13
57
0
22 Feb 2020
1