Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.11081
Cited By
Improving Feature Attribution through Input-specific Network Pruning
25 November 2019
Ashkan Khakzar
Soroosh Baselizadeh
Saurabh Khanduja
Christian Rupprecht
S. T. Kim
Nassir Navab
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Feature Attribution through Input-specific Network Pruning"
7 / 7 papers shown
Title
SPES: Spectrogram Perturbation for Explainable Speech-to-Text Generation
Dennis Fucci
Marco Gaido
Beatrice Savoldi
Matteo Negri
Mauro Cettolo
L. Bentivogli
57
1
0
03 Nov 2024
sMRI-PatchNet: A novel explainable patch-based deep learning network for Alzheimer's disease diagnosis and discriminative atrophy localisation with Structural MRI
Xin Zhang
Liangxiu Han
Lianghao Han
Haoming Chen
Darren Dancey
Daoqiang Zhang
MedIm
18
4
0
17 Feb 2023
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
34
1
0
17 Feb 2023
Explainable Model-Agnostic Similarity and Confidence in Face Verification
Martin Knoche
Torben Teepe
S. Hörmann
Gerhard Rigoll
AAML
CVBM
27
17
0
24 Nov 2022
New Definitions and Evaluations for Saliency Methods: Staying Intrinsic, Complete and Sound
Arushi Gupta
Nikunj Saunshi
Dingli Yu
Kaifeng Lyu
Sanjeev Arora
AAML
FAtt
XAI
31
5
0
05 Nov 2022
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models
Ashkan Khakzar
Yawei Li
Yang Zhang
Mirac Sanisoglu
Seong Tae Kim
Mina Rezaei
Bernd Bischl
Nassir Navab
35
0
0
04 Apr 2022
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei-Yue Wang
AAML
54
18
0
09 Jun 2020
1