ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12385
  4. Cited By
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence
  Modeling

DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling

27 November 2019
Sachin Mehta
Rik Koncel-Kedziorski
Mohammad Rastegari
Hannaneh Hajishirzi
    AI4TS
ArXivPDFHTML

Papers citing "DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling"

4 / 4 papers shown
Title
idT5: Indonesian Version of Multilingual T5 Transformer
idT5: Indonesian Version of Multilingual T5 Transformer
Mukhlish Fuadi
A. Wibawa
S. Sumpeno
11
6
0
02 Feb 2023
Learning Light-Weight Translation Models from Deep Transformer
Learning Light-Weight Translation Models from Deep Transformer
Bei Li
Ziyang Wang
Hui Liu
Quan Du
Tong Xiao
Chunliang Zhang
Jingbo Zhu
VLM
114
40
0
27 Dec 2020
OpenNMT: Open-Source Toolkit for Neural Machine Translation
OpenNMT: Open-Source Toolkit for Neural Machine Translation
Guillaume Klein
Yoon Kim
Yuntian Deng
Jean Senellart
Alexander M. Rush
256
1,896
0
10 Jan 2017
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
216
7,923
0
17 Aug 2015
1