Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05283
Cited By
Identifying Mislabeled Instances in Classification Datasets
11 December 2019
Nicolas Müller
Karla Markert
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Identifying Mislabeled Instances in Classification Datasets"
12 / 12 papers shown
Title
Why is SAM Robust to Label Noise?
Christina Baek
Zico Kolter
Aditi Raghunathan
NoLa
AAML
43
9
0
06 May 2024
On Evaluation of Document Classification using RVL-CDIP
Stefan Larson
Gordon Lim
Kevin Leach
39
3
0
21 Jun 2023
Detecting Errors in a Numerical Response via any Regression Model
Hang Zhou
Jonas W. Mueller
Mayank Kumar
Jane-ling Wang
Jing-Sheng Lei
36
0
0
26 May 2023
Towards understanding neural collapse in supervised contrastive learning with the information bottleneck method
Siwei Wang
S. Palmer
35
2
0
19 May 2023
Identifying Incorrect Annotations in Multi-Label Classification Data
Aditya Thyagarajan
Elías Snorrason
Curtis G. Northcutt
Jonas W. Mueller
37
10
0
25 Nov 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
35
4
0
20 Oct 2022
Detecting Label Errors in Token Classification Data
Wei-Chen Wang
Jonas W. Mueller
29
13
0
08 Oct 2022
Efficient Adversarial Training With Data Pruning
Maximilian Kaufmann
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
Nicolas Papernot
AAML
44
7
0
01 Jul 2022
Detecting Label Errors by using Pre-Trained Language Models
Derek Chong
Jenny Hong
Christopher D. Manning
NoLa
55
21
0
25 May 2022
Training Dynamic based data filtering may not work for NLP datasets
Arka Talukdar
Monika Dagar
Prachi Gupta
Varun G. Menon
NoLa
48
3
0
19 Sep 2021
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Vaibhav Pulastya
Gaurav Nuti
Yash Kumar Atri
Tanmoy Chakraborty
NoLa
35
5
0
10 Sep 2021
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
35
551
0
18 Aug 2020
1