ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07575
16
19

Predicting detection filters for small footprint open-vocabulary keyword spotting

16 December 2019
Théodore Bluche
Thibault Gisselbrecht
    ObjD
ArXivPDFHTML
Abstract

In this paper, we propose a fully-neural approach to open-vocabulary keyword spotting, that allows the users to include a customizable voice interface to their device and that does not require task-specific data. We present a keyword detection neural network weighing less than 250KB, in which the topmost layer performing keyword detection is predicted by an auxiliary network, that may be run offline to generate a detector for any keyword. We show that the proposed model outperforms acoustic keyword spotting baselines by a large margin on two tasks of detecting keywords in utterances and three tasks of detecting isolated speech commands. We also propose a method to fine-tune the model when specific training data is available for some keywords, which yields a performance similar to a standard speech command neural network while keeping the ability of the model to be applied to new keywords.

View on arXiv
Comments on this paper