Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.09064
Cited By
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
19 December 2019
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes"
27 / 27 papers shown
Title
Defending against Adversarial Malware Attacks on ML-based Android Malware Detection Systems
Ping He
Lorenzo Cavallaro
Shouling Ji
AAML
39
0
0
23 Jan 2025
CaFA: Cost-aware, Feasible Attacks With Database Constraints Against Neural Tabular Classifiers
Matan Ben-Tov
Daniel Deutch
Nave Frost
Mahmood Sharif
AAML
107
0
0
20 Jan 2025
On the Robustness of Malware Detectors to Adversarial Samples
Muhammad Salman
B. Zhao
H. Asghar
Muhammad Ikram
Sidharth Kaushik
M. Kâafar
AAML
29
0
0
05 Aug 2024
A Wolf in Sheep's Clothing: Practical Black-box Adversarial Attacks for Evading Learning-based Windows Malware Detection in the Wild
Xiang Ling
Zhiyu Wu
Bin Wang
Wei Deng
Jingzheng Wu
Shouling Ji
Tianyue Luo
Yanjun Wu
AAML
36
1
0
03 Jul 2024
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
Marco Rando
Luca Demetrio
Lorenzo Rosasco
Fabio Roli
AAML
26
1
0
23 May 2024
SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
Andrea Ponte
Dmitrijs Trizna
Luca Demetrio
Battista Biggio
Ivan Tesfai Ogbu
Fabio Roli
41
0
0
23 May 2024
Certified Adversarial Robustness of Machine Learning-based Malware Detectors via (De)Randomized Smoothing
Daniel Gibert
Luca Demetrio
Giulio Zizzo
Quan Le
Jordi Planes
Battista Biggio
AAML
33
2
0
01 May 2024
Machine Learning for Windows Malware Detection and Classification: Methods, Challenges and Ongoing Research
Daniel Gibert
AAML
34
1
0
29 Apr 2024
A Robust Defense against Adversarial Attacks on Deep Learning-based Malware Detectors via (De)Randomized Smoothing
Daniel Gibert
Giulio Zizzo
Quan Le
Jordi Planes
AAML
31
4
0
23 Feb 2024
On the Effectiveness of Adversarial Samples against Ensemble Learning-based Windows PE Malware Detectors
T. To
Danhee Kim
Do Thi Thu Hien
Nghi Hoang Khoa
Hien Do Hoang
Phan The Duy
V. Pham
AAML
14
0
0
25 Sep 2023
Towards a Practical Defense against Adversarial Attacks on Deep Learning-based Malware Detectors via Randomized Smoothing
Daniel Gibert
Giulio Zizzo
Quan Le
AAML
21
5
0
17 Aug 2023
URET: Universal Robustness Evaluation Toolkit (for Evasion)
Kevin Eykholt
Taesung Lee
D. Schales
Jiyong Jang
Ian Molloy
Masha Zorin
AAML
33
6
0
03 Aug 2023
Hyper-parameter Tuning for Adversarially Robust Models
Pedro Mendes
Paolo Romano
David Garlan
AAML
11
2
0
05 Apr 2023
DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness
Shoumik Saha
Wenxiao Wang
Yigitcan Kaya
S. Feizi
Tudor Dumitras
AAML
11
1
0
20 Mar 2023
Adversarial Attacks against Binary Similarity Systems
Gianluca Capozzi
Daniele Cono DÉlia
Giuseppe Antonio Di Luna
Leonardo Querzoni
AAML
24
0
0
20 Mar 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
22
14
0
31 Jan 2023
ML-FEED: Machine Learning Framework for Efficient Exploit Detection
Tanujay Saha
Tamjid Al-Rahat
N. Aaraj
Yuan Tian
N. Jha
20
3
0
11 Jan 2023
Instance Attack:An Explanation-based Vulnerability Analysis Framework Against DNNs for Malware Detection
Ruijin Sun
Shize Guo
Jinhong Guo
Changyou Xing
Luming Yang
Xi Guo
Zhisong Pan
AAML
19
1
0
06 Sep 2022
Black-box Attacks Against Neural Binary Function Detection
Josh Bundt
Michael Davinroy
Ioannis Agadakos
Alina Oprea
William K. Robertson
AAML
21
1
0
24 Aug 2022
On deceiving malware classification with section injection
Adeilson Antonio da Silva
Maurício Pamplona Segundo
23
4
0
12 Aug 2022
Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware
Luca Demetrio
Battista Biggio
Fabio Roli
AAML
11
8
0
12 Jul 2022
Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art
Xiang Ling
Lingfei Wu
Jiangyu Zhang
Zhenqing Qu
Wei Deng
...
Chunming Wu
S. Ji
Tianyue Luo
Jingzheng Wu
Yanjun Wu
AAML
26
72
0
23 Dec 2021
MALIGN: Explainable Static Raw-byte Based Malware Family Classification using Sequence Alignment
Shoumik Saha
Sadia Afroz
A. Rahman
17
4
0
28 Nov 2021
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
22
2
0
22 Nov 2021
Mal2GCN: A Robust Malware Detection Approach Using Deep Graph Convolutional Networks With Non-Negative Weights
Omid Kargarnovin
A. M. Sadeghzadeh
R. Jalili
AAML
13
7
0
27 Aug 2021
Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version]
Jacopo Cortellazzi
Feargus Pendlebury
Daniel Arp
Erwin Quiring
Fabio Pierazzi
Lorenzo Cavallaro
AAML
19
0
0
05 Nov 2019
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
258
3,109
0
04 Nov 2016
1