Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.11279
Cited By
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
24 December 2019
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer"
33 / 33 papers shown
Title
Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data
Yuting He
Yiqiang Chen
Xiaodong Yang
H. Yu
Yi-Hua Huang
Yang Gu
FedML
55
20
0
20 Apr 2025
Corrected with the Latest Version: Make Robust Asynchronous Federated Learning Possible
Chaoyi Lu
Yiding Sun
Pengbo Li
Zhichuan Yang
FedML
34
0
0
05 Apr 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
48
0
0
13 Mar 2025
Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
Xiuwen Fang
Mang Ye
Bo Du
FedML
66
1
0
12 Mar 2025
Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead
Won-Jun Jang
Hyeon-Seo Park
Si-Hyeon Lee
FedML
155
0
0
10 Feb 2025
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
CYCle: Choosing Your Collaborators Wisely to Enhance Collaborative Fairness in Decentralized Learning
Nurbek Tastan
Samuel Horváth
Karthik Nandakumar
FedML
69
0
0
21 Jan 2025
Practical Insights into Knowledge Distillation for Pre-Trained Models
Norah Alballa
Marco Canini
37
2
0
22 Feb 2024
On the Byzantine-Resilience of Distillation-Based Federated Learning
Christophe Roux
Max Zimmer
S. Pokutta
AAML
49
1
0
19 Feb 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
17
13
0
10 Feb 2024
Teacher-Student Architecture for Knowledge Distillation: A Survey
Chengming Hu
Xuan Li
Danyang Liu
Haolun Wu
Xi Chen
Ju Wang
Xue Liu
21
16
0
08 Aug 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
30
23
0
20 Jul 2023
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
33
244
0
20 Jul 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
76
47
0
21 Feb 2023
FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Quyang Pan
Xue Jiang
Bo Gao
35
31
0
01 Jan 2023
Security Analysis of SplitFed Learning
M. A. Khan
Virat Shejwalkar
Amir Houmansadr
Fatima M. Anwar
FedML
8
11
0
04 Dec 2022
Scalable Collaborative Learning via Representation Sharing
Frédéric Berdoz
Abhishek Singh
Martin Jaggi
Ramesh Raskar
FedML
19
3
0
20 Nov 2022
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
Virat Shejwalkar
Lingjuan Lyu
Amir Houmansadr
AAML
25
10
0
01 Nov 2022
Federated Learning with Privacy-Preserving Ensemble Attention Distillation
Xuan Gong
Liangchen Song
Rishi Vedula
Abhishek Sharma
Meng Zheng
...
Arun Innanje
Terrence Chen
Junsong Yuan
David Doermann
Ziyan Wu
FedML
15
27
0
16 Oct 2022
Label driven Knowledge Distillation for Federated Learning with non-IID Data
Minh-Duong Nguyen
Viet Quoc Pham
D. Hoang
Long Tran-Thanh
Diep N. Nguyen
W. Hwang
16
2
0
29 Sep 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
49
59
0
02 Aug 2022
Enhanced Security and Privacy via Fragmented Federated Learning
N. Jebreel
J. Domingo-Ferrer
Alberto Blanco-Justicia
David Sánchez
FedML
13
26
0
13 Jul 2022
Defending against the Label-flipping Attack in Federated Learning
N. Jebreel
J. Domingo-Ferrer
David Sánchez
Alberto Blanco-Justicia
AAML
13
36
0
05 Jul 2022
FL-Defender: Combating Targeted Attacks in Federated Learning
N. Jebreel
J. Domingo-Ferrer
AAML
FedML
43
56
0
02 Jul 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
29
31
0
30 May 2022
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems
Martin Rapp
R. Khalili
Kilian Pfeiffer
J. Henkel
19
18
0
16 Dec 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
30
412
0
14 Mar 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
175
355
0
07 Dec 2020
Practical One-Shot Federated Learning for Cross-Silo Setting
Qinbin Li
Bingsheng He
D. Song
FedML
11
113
0
02 Oct 2020
Federated Model Distillation with Noise-Free Differential Privacy
Lichao Sun
Lingjuan Lyu
FedML
11
106
0
11 Sep 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
54
50
0
01 Apr 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
177
1,032
0
29 Nov 2018
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
267
404
0
09 Apr 2018
1