ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.13503
  4. Cited By
Side-Tuning: A Baseline for Network Adaptation via Additive Side
  Networks

Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks

31 December 2019
Jeffrey O. Zhang
Alexander Sax
Amir Zamir
Leonidas J. Guibas
Jitendra Malik
ArXivPDFHTML

Papers citing "Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks"

8 / 8 papers shown
Title
Breaking Neural Network Scaling Laws with Modularity
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
34
2
0
09 Sep 2024
Transferability in Deep Learning: A Survey
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
17
100
0
15 Jan 2022
Efficient Feature Transformations for Discriminative and Generative
  Continual Learning
Efficient Feature Transformations for Discriminative and Generative Continual Learning
Vinay K. Verma
Kevin J Liang
Nikhil Mehta
Piyush Rai
Lawrence Carin
CLL
30
76
0
25 Mar 2021
Structural Adapters in Pretrained Language Models for AMR-to-text
  Generation
Structural Adapters in Pretrained Language Models for AMR-to-text Generation
Leonardo F. R. Ribeiro
Yue Zhang
Iryna Gurevych
33
69
0
16 Mar 2021
Deep Multi-Task Learning for Joint Localization, Perception, and
  Prediction
Deep Multi-Task Learning for Joint Localization, Perception, and Prediction
John Phillips
Julieta Martinez
Ioan Andrei Bârsan
Sergio Casas
Abbas Sadat
R. Urtasun
21
36
0
17 Jan 2021
Technical Report: Auxiliary Tuning and its Application to Conditional
  Text Generation
Technical Report: Auxiliary Tuning and its Application to Conditional Text Generation
Yoel Zeldes
Dan Padnos
Or Sharir
Barak Peleg
23
19
0
30 Jun 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
252
11,677
0
09 Mar 2017
1