Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.00805
Cited By
Making Sense of Reinforcement Learning and Probabilistic Inference
3 January 2020
Brendan O'Donoghue
Ian Osband
Catalin Ionescu
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Making Sense of Reinforcement Learning and Probabilistic Inference"
10 / 10 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
92
1
0
29 Apr 2025
Probabilistic Constrained Reinforcement Learning with Formal Interpretability
Yanran Wang
Qiuchen Qian
David E. Boyle
16
4
0
13 Jul 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
34
8
0
05 May 2023
Conservative objective models are a special kind of contrastive divergence-based energy model
Christopher Beckham
C. Pal
35
4
0
07 Apr 2023
Model-Based Uncertainty in Value Functions
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
36
13
0
24 Feb 2023
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
28
4
0
30 Oct 2022
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
55
8
0
23 Oct 2022
On the connection between Bregman divergence and value in regularized Markov decision processes
Brendan O'Donoghue
OffRL
23
2
0
21 Oct 2022
Towards an Understanding of Default Policies in Multitask Policy Optimization
Theodore H. Moskovitz
Michael Arbel
Jack Parker-Holder
Aldo Pacchiano
22
9
0
04 Nov 2021
On the Global Convergence Rates of Softmax Policy Gradient Methods
Jincheng Mei
Chenjun Xiao
Csaba Szepesvári
Dale Schuurmans
47
275
0
13 May 2020
1