ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.01091
  4. Cited By
RPR: Random Partition Relaxation for Training; Binary and Ternary Weight
  Neural Networks

RPR: Random Partition Relaxation for Training; Binary and Ternary Weight Neural Networks

4 January 2020
Lukas Cavigelli
Luca Benini
    MQ
ArXivPDFHTML

Papers citing "RPR: Random Partition Relaxation for Training; Binary and Ternary Weight Neural Networks"

3 / 3 papers shown
Title
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of
  RNN inference
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference
G. Paulin
Francesco Conti
Lukas Cavigelli
Luca Benini
22
8
0
14 Feb 2022
Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
  Implementation for Edge Motor-Imagery Brain--Machine Interfaces
Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet Implementation for Edge Motor-Imagery Brain--Machine Interfaces
Tibor Schneider
Xiaying Wang
Michael Hersche
Lukas Cavigelli
Luca Benini
6
24
0
24 Apr 2020
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
316
1,047
0
10 Feb 2017
1