ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02518
  4. Cited By
Advancing machine learning for MR image reconstruction with an open
  competition: Overview of the 2019 fastMRI challenge

Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge

6 January 2020
Florian Knoll
Tullie Murrell
Anuroop Sriram
N. Yakubova
Jure Zbontar
Michael G. Rabbat
Aaron Defazio
Matthew Muckley
D. Sodickson
C. L. Zitnick
M. Recht
ArXivPDFHTML

Papers citing "Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge"

50 / 63 papers shown
Title
Efficient Noise Calculation in Deep Learning-based MRI Reconstructions
Efficient Noise Calculation in Deep Learning-based MRI Reconstructions
Onat Dalmaz
Arjun D Desai
Reinhard Heckel
Tolga Çukur
Akshay Chaudhari
B. Hargreaves
24
0
0
04 May 2025
JotlasNet: Joint Tensor Low-Rank and Attention-based Sparse Unrolling Network for Accelerating Dynamic MRI
JotlasNet: Joint Tensor Low-Rank and Attention-based Sparse Unrolling Network for Accelerating Dynamic MRI
Yinghao Zhang
Haiyan Gui
Ningdi Yang
Yue Hu
44
0
0
17 Feb 2025
A Trust-Guided Approach to MR Image Reconstruction with Side Information
A Trust-Guided Approach to MR Image Reconstruction with Side Information
Arda Atalık
S. Chopra
D. Sodickson
28
0
0
06 Jan 2025
Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI
Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI
George Yiasemis
J. Sonke
Jonas Teuwen
68
0
0
27 Nov 2024
The object detection method aids in image reconstruction evaluation and
  clinical interpretation of meniscal abnormalities
The object detection method aids in image reconstruction evaluation and clinical interpretation of meniscal abnormalities
Natalia Konovalova
Aniket A. Tolpadi
Felix Liu
Zehra Akkaya
F. Gassert
...
J. Luitjens
Misung Han
E. Bahroos
Sharmila Majumdar
V. Pedoia
35
0
0
16 Jul 2024
On Instabilities of Unsupervised Denoising Diffusion Models in Magnetic
  Resonance Imaging Reconstruction
On Instabilities of Unsupervised Denoising Diffusion Models in Magnetic Resonance Imaging Reconstruction
T. Han
S. Nebelung
Firas Khader
Jakob Nikolas Kather
Daniel Truhn
MedIm
DiffM
21
1
0
23 Jun 2024
Adaptive Sampling of k-Space in Magnetic Resonance for Rapid Pathology
  Prediction
Adaptive Sampling of k-Space in Magnetic Resonance for Rapid Pathology Prediction
Chen-Yu Yen
Raghav Singhal
Umang Sharma
Rajesh Ranganath
S. Chopra
Lerrel Pinto
32
1
0
06 Jun 2024
A study of why we need to reassess full reference image quality assessment with medical images
A study of why we need to reassess full reference image quality assessment with medical images
Anna Breger
A. Biguri
Malena Sabaté Landman
Ian Selby
Nicole Amberg
...
Lipeng Ning
Sören Dittmer
Michael Roberts
AIX-COVNET Collaboration
Carola-Bibiane Schönlieb
37
5
0
29 May 2024
NeRF Solves Undersampled MRI Reconstruction
NeRF Solves Undersampled MRI Reconstruction
Tae Jun Jang
Chang Min Hyun
19
3
0
20 Feb 2024
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse
  Training Data
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data
Kang Lin
Reinhard Heckel
OOD
27
5
0
16 Dec 2023
Towards Architecture-Agnostic Untrained Network Priors for Image
  Reconstruction with Frequency Regularization
Towards Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization
Yilin Liu
Yunkui Pang
Jiang-Ping Li
Yong Chen
P. Yap
29
0
0
15 Dec 2023
NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit
  sensitivity maps
NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit sensitivity maps
F. Zimmermann
A. Kofler
27
1
0
27 Sep 2023
The STOIC2021 COVID-19 AI challenge: applying reusable training
  methodologies to private data
The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data
L. Boulogne
Julian Lorenz
Daniel Kienzle
Robin Schon
K. Ludwig
...
C. Russ
R. Ionasec
Nikos Paragios
Bram van Ginneken
Marieke Dubois
21
4
0
18 Jun 2023
Predicting dynamic, motion-related changes in B0 field in the brain at a
  7 T MRI using a subject-specific fine-tuned U-net
Predicting dynamic, motion-related changes in B0 field in the brain at a 7 T MRI using a subject-specific fine-tuned U-net
Stanislav Motyka
Paul Weiser
Beáta Bachratá
L. Hingerl
Bernhard Strasser
...
M. Zaitsev
S. Robinson
Georg Langs
S. Trattnig
W. Bogner
MedIm
23
2
0
17 Apr 2023
HyperSLICE: HyperBand optimized Spiral for Low-latency Interactive
  Cardiac Examination
HyperSLICE: HyperBand optimized Spiral for Low-latency Interactive Cardiac Examination
Oliver Jaubert
Javier Montalt-Tordera
Dan Knight
Simon Arridge
J. Steeden
V. Muthurangu
14
7
0
06 Feb 2023
On the Feasibility of Machine Learning Augmented Magnetic Resonance for
  Point-of-Care Identification of Disease
On the Feasibility of Machine Learning Augmented Magnetic Resonance for Point-of-Care Identification of Disease
R. Singhal
Mukund Sudarshan
Anish Mahishi
S. Kaushik
L. Ginocchio
A. Tong
H. Chandarana
D. Sodickson
Rajesh Ranganath
S. Chopra
25
5
0
27 Jan 2023
Computationally Efficient 3D MRI Reconstruction with Adaptive MLP
Computationally Efficient 3D MRI Reconstruction with Adaptive MLP
Eric Z. Chen
Chi Zhang
Xiao Chen
Yikang Liu
Terrence Chen
Shanhui Sun
MedIm
25
4
0
21 Jan 2023
Experimental Design for Multi-Channel Imaging via Task-Driven Feature
  Selection
Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
Stefano B. Blumberg
Paddy J. Slator
Daniel C. Alexander
26
1
0
13 Oct 2022
Scaling Laws For Deep Learning Based Image Reconstruction
Scaling Laws For Deep Learning Based Image Reconstruction
Tobit Klug
Reinhard Heckel
57
12
0
27 Sep 2022
A Densely Interconnected Network for Deep Learning Accelerated MRI
A Densely Interconnected Network for Deep Learning Accelerated MRI
Jon André Ottesen
M. Caan
I. Groote
A. Bjørnerud
45
9
0
05 Jul 2022
Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
Martin Genzel
Ingo Gühring
Jan Macdonald
M. März
25
25
0
14 Jun 2022
Invertible Sharpening Network for MRI Reconstruction Enhancement
Invertible Sharpening Network for MRI Reconstruction Enhancement
Siyuan Dong
Eric Z. Chen
Lin Zhao
Xiao Chen
Yikang Liu
Terrence Chen
Shanhui Sun
29
5
0
06 Jun 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient
  Accelerated MRI Reconstruction
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
9
7
0
21 Apr 2022
Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
  Methodologies from CNN, GAN to Attention and Transformers
Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and Methodologies from CNN, GAN to Attention and Transformers
Jiahao Huang
Yingying Fang
Yang Nan
Huanjun Wu
Yinzhe Wu
...
Zidong Wang
Pietro Lio'
Daniel Rueckert
Yonina C. Eldar
Guang Yang
OOD
MedIm
31
3
0
01 Apr 2022
FReSCO: Flow Reconstruction and Segmentation for low latency Cardiac
  Output monitoring using deep artifact suppression and segmentation
FReSCO: Flow Reconstruction and Segmentation for low latency Cardiac Output monitoring using deep artifact suppression and segmentation
O. Jaubert
Javier Montalt-Tordera
James T Brown
D. Knight
Simon Arridge
J. Steeden
V. Muthurangu
11
4
0
25 Mar 2022
Physics-Driven Deep Learning for Computational Magnetic Resonance
  Imaging
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Kerstin Hammernik
Thomas Kustner
Burhaneddin Yaman
Zhengnan Huang
Daniel Rueckert
Florian Knoll
Mehmet Akçakaya
PINN
MedIm
AI4CE
24
69
0
23 Mar 2022
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image
  Labels for Quantitative Clinical Evaluation
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation
Arjun D Desai
Andrew M Schmidt
E. Rubin
Christopher M. Sandino
Marianne S. Black
...
R. Boutin
Christopher Ré
G. Gold
B. Hargreaves
Akshay S. Chaudhari
17
64
0
14 Mar 2022
Active Phase-Encode Selection for Slice-Specific Fast MR Scanning Using
  a Transformer-Based Deep Reinforcement Learning Framework
Active Phase-Encode Selection for Slice-Specific Fast MR Scanning Using a Transformer-Based Deep Reinforcement Learning Framework
Yiming Liu
Yanwei Pang
Ruiqi Jin
Zhenchang Wang
MedIm
13
2
0
11 Mar 2022
Undersampled MRI Reconstruction with Side Information-Guided
  Normalisation
Undersampled MRI Reconstruction with Side Information-Guided Normalisation
Xinwen Liu
Jing Wang
Cheng-Fang Peng
Shekhar S. Chandra
Feng Liu
S. Kevin Zhou
OOD
21
6
0
07 Mar 2022
Deep, Deep Learning with BART
Deep, Deep Learning with BART
Moritz Blumenthal
Guanxiong Luo
Martin Schilling
H. C. M. Holme
M. Uecker
14
15
0
28 Feb 2022
Gradient-Based Learning of Discrete Structured Measurement Operators for
  Signal Recovery
Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery
Jonathan Sauder
Martin Genzel
P. Jung
17
1
0
07 Feb 2022
Image-to-Image MLP-mixer for Image Reconstruction
Image-to-Image MLP-mixer for Image Reconstruction
Youssef Mansour
Kang Lin
Reinhard Heckel
SupR
31
15
0
04 Feb 2022
Iterative training of robust k-space interpolation networks for improved
  image reconstruction with limited scan specific training samples
Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples
Peter Dawood
F. Breuer
P. Burd
I. Homolya
Johannes Oberberger
P. Jakob
M. Blaimer
14
5
0
10 Jan 2022
Assessment of Data Consistency through Cascades of Independently
  Recurrent Inference Machines for fast and robust accelerated MRI
  reconstruction
Assessment of Data Consistency through Cascades of Independently Recurrent Inference Machines for fast and robust accelerated MRI reconstruction
D. Karkalousos
S. Noteboom
H. Hulst
F. Vos
M. Caan
OOD
AI4CE
17
10
0
30 Nov 2021
WARPd: A linearly convergent first-order method for inverse problems
  with approximate sharpness conditions
WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions
Matthew J. Colbrook
21
2
0
24 Oct 2021
End-to-End AI-based MRI Reconstruction and Lesion Detection Pipeline for
  Evaluation of Deep Learning Image Reconstruction
End-to-End AI-based MRI Reconstruction and Lesion Detection Pipeline for Evaluation of Deep Learning Image Reconstruction
Ruiyang Zhao
Yuxin Zhang
Burhaneddin Yaman
M. Lungren
M. Hansen
MedIm
16
10
0
23 Sep 2021
fastMRI+: Clinical Pathology Annotations for Knee and Brain Fully
  Sampled Multi-Coil MRI Data
fastMRI+: Clinical Pathology Annotations for Knee and Brain Fully Sampled Multi-Coil MRI Data
Ruiyang Zhao
Burhaneddin Yaman
Yuxin Zhang
Russell Stewart
Austin X. Dixon
Florian Knoll
Zhengnan Huang
Yvonne W. Lui
M. Hansen
M. Lungren
14
29
0
08 Sep 2021
Multi-Modal MRI Reconstruction Assisted with Spatial Alignment Network
Multi-Modal MRI Reconstruction Assisted with Spatial Alignment Network
Kai Xuan
L. Xiang
Xiaoqian Huang
Lichi Zhang
Shu Liao
D. Shen
Qian Wang
17
32
0
12 Aug 2021
Optimal MRI Undersampling Patterns for Ultimate Benefit of Medical
  Vision Tasks
Optimal MRI Undersampling Patterns for Ultimate Benefit of Medical Vision Tasks
A. Razumov
Oleg Y. Rogov
Dmitry V. Dylov
30
9
0
10 Aug 2021
Estimating MRI Image Quality via Image Reconstruction Uncertainty
Estimating MRI Image Quality via Image Reconstruction Uncertainty
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
11
3
0
21 Jun 2021
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an
  Iterative Network for Fanbeam-CT with Unknown Geometry
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry
Martin Genzel
Jan Macdonald
M. März
8
4
0
01 Jun 2021
End-to-End Sequential Sampling and Reconstruction for MRI
End-to-End Sequential Sampling and Reconstruction for MRI
Tianwei Yin
Zihui Wu
He Sun
Adrian V. Dalca
Yisong Yue
Katherine L. Bouman
11
19
0
13 May 2021
Universal Undersampled MRI Reconstruction
Universal Undersampled MRI Reconstruction
Xinwen Liu
Jing Wang
Feng Liu
S.Kevin Zhou
OOD
25
24
0
09 Mar 2021
Towards Ultrafast MRI via Extreme k-Space Undersampling and
  Superresolution
Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution
A. Belov
J. Stadelmann
Sergey Kastryulin
Dmitry V. Dylov
17
6
0
04 Mar 2021
On Instabilities of Conventional Multi-Coil MRI Reconstruction to Small
  Adverserial Perturbations
On Instabilities of Conventional Multi-Coil MRI Reconstruction to Small Adverserial Perturbations
Chi Zhang
Jinghan Jia
Burhaneddin Yaman
S. Moeller
Sijia Liu
Mingyi Hong
Mehmet Akçakaya
AAML
14
8
0
25 Feb 2021
A multispeaker dataset of raw and reconstructed speech production
  real-time MRI video and 3D volumetric images
A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images
Yongwan Lim
Asterios Toutios
Yannick Bliesener
Ye Tian
S. Lingala
...
Bianca Godinez
L. Goldstein
D. Byrd
K. Nayak
Shrikanth S. Narayanan
13
44
0
16 Feb 2021
Zero-Shot Self-Supervised Learning for MRI Reconstruction
Zero-Shot Self-Supervised Learning for MRI Reconstruction
Burhaneddin Yaman
S. A. Hosseini
Mehmet Akçakaya
21
67
0
15 Feb 2021
Bayesian Uncertainty Estimation of Learned Variational MRI
  Reconstruction
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction
Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knoll
T. Pock
UQCV
BDL
15
49
0
12 Feb 2021
Can stable and accurate neural networks be computed? -- On the barriers
  of deep learning and Smale's 18th problem
Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem
Matthew J. Colbrook
Vegard Antun
A. Hansen
65
129
0
20 Jan 2021
Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
Javier Montalt-Tordera
V. Muthurangu
A. Hauptmann
J. Steeden
AI4CE
13
40
0
09 Dec 2020
12
Next