ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02610
15
622

iDLG: Improved Deep Leakage from Gradients

8 January 2020
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
    FedML
ArXivPDFHTML
Abstract

It is widely believed that sharing gradients will not leak private training data in distributed learning systems such as Collaborative Learning and Federated Learning, etc. Recently, Zhu et al. presented an approach which shows the possibility to obtain private training data from the publicly shared gradients. In their Deep Leakage from Gradient (DLG) method, they synthesize the dummy data and corresponding labels with the supervision of shared gradients. However, DLG has difficulty in convergence and discovering the ground-truth labels consistently. In this paper, we find that sharing gradients definitely leaks the ground-truth labels. We propose a simple but reliable approach to extract accurate data from the gradients. Particularly, our approach can certainly extract the ground-truth labels as opposed to DLG, hence we name it Improved DLG (iDLG). Our approach is valid for any differentiable model trained with cross-entropy loss over one-hot labels. We mathematically illustrate how our method can extract ground-truth labels from the gradients and empirically demonstrate the advantages over DLG.

View on arXiv
Comments on this paper