Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 89 papers shown
Title
A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
Kaixiang Zhao
Lincan Li
Kaize Ding
Neil Zhenqiang Gong
Yue Zhao
Yushun Dong
AAML
49
0
0
22 Feb 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
X. Zhang
Ninghui Li
100
1
0
28 Jan 2025
CYCle: Choosing Your Collaborators Wisely to Enhance Collaborative Fairness in Decentralized Learning
Nurbek Tastan
Samuel Horváth
Karthik Nandakumar
FedML
69
0
0
21 Jan 2025
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
30
0
0
11 Oct 2024
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
52
5
0
17 Sep 2024
Gradient Inversion of Federated Diffusion Models
Jiyue Huang
Chi Hong
Lydia Y. Chen
Stefanie Roos
FedML
34
1
0
30 May 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
55
3
0
24 May 2024
Leakage-Resilient and Carbon-Neutral Aggregation Featuring the Federated AI-enabled Critical Infrastructure
Zehang Deng
Ruoxi Sun
Minhui Xue
Sheng Wen
S. Çamtepe
Surya Nepal
Yang Xiang
39
1
0
24 May 2024
On the Efficiency of Privacy Attacks in Federated Learning
Nawrin Tabassum
Ka-Ho Chow
Xuyu Wang
Wenbin Zhang
Yanzhao Wu
FedML
37
1
0
15 Apr 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
41
23
0
05 Apr 2024
Federated Continual Learning via Knowledge Fusion: A Survey
Xin Yang
Hao Yu
Xin Gao
Hao Wang
Junbo Zhang
Tianrui Li
FedML
30
31
0
27 Dec 2023
Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx
Trung-Hieu Hoang
Jordan D. Fuhrman
Ravi K. Madduri
Miao Li
Pranshu Chaturvedi
...
Kibaek Kim
Minseok Ryu
Ryan Chard
Eliu A. Huerta
Maryellen L. Giger
24
5
0
14 Dec 2023
Privacy-preserving quantum federated learning via gradient hiding
Changhao Li
Niraj Kumar
Zhixin Song
Shouvanik Chakrabarti
Marco Pistoia
FedML
22
19
0
07 Dec 2023
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
40
19
0
27 Nov 2023
FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering
Md. Rafi Ur Rashid
Vishnu Asutosh Dasu
Kang Gu
Najrin Sultana
Shagufta Mehnaz
AAML
FedML
44
10
0
24 Oct 2023
Text Embeddings Reveal (Almost) As Much As Text
John X. Morris
Volodymyr Kuleshov
Vitaly Shmatikov
Alexander M. Rush
RALM
28
94
0
10 Oct 2023
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
39
7
0
22 Sep 2023
Approximate and Weighted Data Reconstruction Attack in Federated Learning
Yongcun Song
Ziqi Wang
Enrique Zuazua
AAML
FedML
22
4
0
13 Aug 2023
Feature Matching Data Synthesis for Non-IID Federated Learning
Zijian Li
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
26
20
0
09 Aug 2023
FLIPS: Federated Learning using Intelligent Participant Selection
R. Bhope
K. R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
29
3
0
07 Aug 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
70
4
0
01 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
Mitigating Cross-client GANs-based Attack in Federated Learning
Hong Huang
Xinyu Lei
Tao Xiang
AAML
50
1
0
25 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users
Y. Rahulamathavan
Charuka Herath
Xiaolan Liu
S. Lambotharan
Carsten Maple
25
12
0
08 Jun 2023
Avoid Adversarial Adaption in Federated Learning by Multi-Metric Investigations
T. Krauß
Alexandra Dmitrienko
AAML
22
4
0
06 Jun 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
19
9
0
24 May 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
J. Ma
FedML
24
2
0
06 May 2023
A Game-theoretic Framework for Privacy-preserving Federated Learning
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
21
4
0
11 Apr 2023
RecUP-FL: Reconciling Utility and Privacy in Federated Learning via User-configurable Privacy Defense
Yue-li Cui
Syed Imran Ali Meerza
Zhuohang Li
Luyang Liu
Jiaxin Zhang
Jian-Dong Liu
AAML
FedML
21
4
0
11 Apr 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
11
7
0
28 Mar 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
37
12
0
27 Mar 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
33
7
0
22 Feb 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
47
0
21 Feb 2023
Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI
Juexiao Zhou
Longxi Zhou
Di Wang
Xiaopeng Xu
Haoyang Li
Yuetan Chu
Wenkai Han
Xin Gao
17
20
0
20 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
Mutual Information Regularization for Vertical Federated Learning
Tianyuan Zou
Yang Liu
Ya-Qin Zhang
AAML
FedML
27
7
0
01 Jan 2023
Reconstructing Training Data from Model Gradient, Provably
Zihan Wang
Jason D. Lee
Qi Lei
FedML
22
24
0
07 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
34
0
0
05 Dec 2022
Federated Learning Attacks and Defenses: A Survey
Yao Chen
Yijie Gui
Hong Lin
Wensheng Gan
Yongdong Wu
FedML
38
29
0
27 Nov 2022
Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing
Hai M. Nguyen
N. Chu
Diep N. Nguyen
D. Hoang
Van-Dinh Nguyen
Minh Hoàng Hà
E. Dutkiewicz
Marwan Krunz
FedML
19
1
0
14 Nov 2022
Two Models are Better than One: Federated Learning Is Not Private For Google GBoard Next Word Prediction
Mohamed Suliman
D. Leith
SILM
FedML
23
7
0
30 Oct 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
29
2
0
28 Oct 2022
Analysing Training-Data Leakage from Gradients through Linear Systems and Gradient Matching
Cangxiong Chen
Neill D. F. Campbell
FedML
24
1
0
20 Oct 2022
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Zhao-quan Song
Yitan Wang
Zheng Yu
Licheng Zhang
FedML
23
28
0
15 Oct 2022
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
13
29
0
12 Sep 2022
Exploring Semantic Attributes from A Foundation Model for Federated Learning of Disjoint Label Spaces
Shitong Sun
Chenyang Si
Guile Wu
S. Gong
FedML
23
0
0
29 Aug 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
32
46
0
23 Aug 2022
Dropout is NOT All You Need to Prevent Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
22
12
0
12 Aug 2022
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale
Gopinath Chennupati
Milind Rao
Gurpreet Chadha
Aaron Eakin
A. Raju
...
Andrew Oberlin
Buddha Nandanoor
Prahalad Venkataramanan
Zheng Wu
Pankaj Sitpure
CLL
22
8
0
19 Jul 2022
1
2
Next