Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 349 papers shown
Title
Membership Inference Attacks and Defenses in Federated Learning: A Survey
ACM Computing Surveys (ACM CSUR), 2024
Li Bai
Haibo Hu
Qingqing Ye
Haoyang Li
Leixia Wang
Jianliang Xu
FedML
193
44
0
09 Dec 2024
Privacy-Preserving Federated Learning via Homomorphic Adversarial Networks
Wenhan Dong
Chao Lin
Xinlei He
Xinyi Huang
Shengmin Xu
PICV
215
0
0
02 Dec 2024
Gradient Inversion Attack on Graph Neural Networks
Divya Anand Sinha
Ruijie Du
Yezi Liu
Athina Markopolou
Yanning Shen
FedML
192
3
0
29 Nov 2024
Optimal Defenses Against Gradient Reconstruction Attacks
Yuxiao Chen
Gamze Gürsoy
Qi Lei
FedML
AAML
170
1
0
06 Nov 2024
NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
Marlon Tobaben
Mohamed Ali Souibgui
Rubèn Pérez Tito
Khanh Nguyen
Raouf Kerkouche
...
Josep Lladós
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
FedML
225
1
0
06 Nov 2024
Gradient-Guided Conditional Diffusion Models for Private Image Reconstruction: Analyzing Adversarial Impacts of Differential Privacy and Denoising
Tao Huang
Jiayang Meng
Hong Chen
Guolong Zheng
Xu Yang
Xun Yi
Hua Wang
DiffM
118
3
0
05 Nov 2024
FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses
Isaac Baglin
Xiatian Zhu
Simon Hadfield
FedML
156
1
0
05 Nov 2024
Federated Black-Box Adaptation for Semantic Segmentation
Neural Information Processing Systems (NeurIPS), 2024
Jay N. Paranjape
S. Sikder
S. Vedula
Vishal M. Patel
FedML
145
1
0
31 Oct 2024
Extracting Spatiotemporal Data from Gradients with Large Language Models
Lele Zheng
Yang Cao
Renhe Jiang
Kenjiro Taura
Yulong Shen
Sheng Li
Masatoshi Yoshikawa
117
1
0
21 Oct 2024
Investigating Effective Speaker Property Privacy Protection in Federated Learning for Speech Emotion Recognition
ACM Multimedia Asia (MMAsia), 2024
Chao Tan
Sheng Li
Yang Cao
Zhao Ren
Tanja Schultz
109
0
0
17 Oct 2024
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
108
0
0
11 Oct 2024
SoK: Towards Security and Safety of Edge AI
Tatjana Wingarz
Anne Lauscher
Janick Edinger
Dominik Kaaser
Stefan Schulte
Mathias Fischer
166
0
0
07 Oct 2024
Federated Learning Nodes Can Reconstruct Peers' Image Data
Ethan Wilson
Kai Yue
Chau-Wai Wong
H. Dai
FedML
165
1
0
07 Oct 2024
Advances in Privacy Preserving Federated Learning to Realize a Truly Learning Healthcare System
International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (ICPSISA), 2024
Ravi K. Madduri
Zilinghan Li
Tarak Nandi
Kibaek Kim
Minseok Ryu
Alex Rodriguez
109
3
0
29 Sep 2024
Subject Data Auditing via Source Inference Attack in Cross-Silo Federated Learning
Journal of Information Security and Applications (JISA), 2024
Jiaxin Li
Marco Arazzi
Antonino Nocera
Mauro Conti
105
3
0
28 Sep 2024
Privacy Attack in Federated Learning is Not Easy: An Experimental Study
Hangyu Zhu
Liyuan Huang
Zhenping Xie
FedML
125
1
0
28 Sep 2024
In-depth Analysis of Privacy Threats in Federated Learning for Medical Data
B. Das
M. H. Amini
Yanzhao Wu
109
1
0
27 Sep 2024
Federated Learning under Attack: Improving Gradient Inversion for Batch of Images
Luiz Leite
Yuri Santo
Bruno L. Dalmazo
André Riker
FedML
48
6
0
26 Sep 2024
Perfect Gradient Inversion in Federated Learning: A New Paradigm from the Hidden Subset Sum Problem
Qiongxiu Li
Lixia Luo
Agnese Gini
Changlong Ji
Zhanhao Hu
Xiao-Li Li
Chengfang Fang
Jie Shi
Xiaolin Hu
FedML
123
4
0
21 Sep 2024
Data Poisoning and Leakage Analysis in Federated Learning
Wenqi Wei
Tiansheng Huang
Zachary Yahn
Anoop Singhal
Margaret Loper
Ling Liu
FedML
SILM
112
0
0
19 Sep 2024
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2024
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
257
19
0
17 Sep 2024
Exploring User-level Gradient Inversion with a Diffusion Prior
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
Bradley Malin
K. Parsons
Ye Wang
DiffM
103
1
0
11 Sep 2024
S
2
S^2
S
2
NeRF: Privacy-preserving Training Framework for NeRF
Conference on Computer and Communications Security (CCS), 2024
Bokang Zhang
Yanglin Zhang
Zhikun Zhang
Jinglan Yang
Lingying Huang
Junfeng Wu
163
2
0
03 Sep 2024
DAMe: Personalized Federated Social Event Detection with Dual Aggregation Mechanism
International Conference on Information and Knowledge Management (CIKM), 2024
Xiaoyan Yu
Yifan Wei
Pu Li
Shuaishuai Zhou
Hao Peng
Li Sun
Liehuang Zhu
Philip S. Yu
FedML
166
2
0
01 Sep 2024
Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective
Zifan Wang
Binghui Zhang
Meng Pang
Yuan Hong
Binghui Wang
FedML
144
0
0
22 Aug 2024
Random Gradient Masking as a Defensive Measure to Deep Leakage in Federated Learning
Joon Kim
Sejin Park
AAML
FedML
151
2
0
15 Aug 2024
Efficient Byzantine-Robust and Provably Privacy-Preserving Federated Learning
Chenfei Nie
Qiang Li
Yuxin Yang
Yuede Ji
Binghui Wang
148
1
0
29 Jul 2024
MedLeak: Multimodal Medical Data Leakage in Secure Federated Learning with Crafted Models
Shanghao Shi
Md Shahedul Haque
Abhijeet Parida
Chaoyu Zhang
M. Linguraru
Y. T. Hou
Syed Muhammad Anwar
W. Lou
FedML
146
4
0
13 Jul 2024
Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
Wenrui Yu
Qiongxiu Li
Milan Lopuhaä-Zwakenberg
Mads Græsbøll Christensen
Richard Heusdens
FedML
104
7
0
12 Jul 2024
Enhancing Privacy of Spatiotemporal Federated Learning against Gradient Inversion Attacks
Lele Zheng
Yang Cao
Renhe Jiang
Kenjiro Taura
Yulong Shen
Sheng Li
Masatoshi Yoshikawa
AAML
138
3
0
11 Jul 2024
QBI: Quantile-based Bias Initialization for Efficient Private Data Reconstruction in Federated Learning
Micha V. Nowak
Tim P. Bott
David Khachaturov
Frank Puppe
Adrian Krenzer
Amar Hekalo
FedML
101
1
0
26 Jun 2024
Machine Unlearning with Minimal Gradient Dependence for High Unlearning Ratios
Tao Huang
Ziyang Chen
Jiayang Meng
Qingyu Huang
Xu Yang
Xun Yi
Ibrahim Khalil
MU
102
0
0
24 Jun 2024
Breaking Secure Aggregation: Label Leakage from Aggregated Gradients in Federated Learning
Peng Kuang
Zhiwei Chang
Jiahui Hu
Xiaoyi Pang
Jiacheng Du
Yongle Chen
Kui Ren
FedML
115
7
0
22 Jun 2024
Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives
Linlin Wang
Tianqing Zhu
Wanlei Zhou
Philip S. Yu
123
3
0
16 Jun 2024
Knowledge Distillation in Federated Learning: a Survey on Long Lasting Challenges and New Solutions
Laiqiao Qin
Tianqing Zhu
Wanlei Zhou
Philip S. Yu
143
9
0
16 Jun 2024
Is Diffusion Model Safe? Severe Data Leakage via Gradient-Guided Diffusion Model
Jiayang Meng
Tao Huang
Hong Chen
Cuiping Li
DiffM
98
1
0
13 Jun 2024
R-CONV: An Analytical Approach for Efficient Data Reconstruction via Convolutional Gradients
WISE (WISE), 2024
T. Eltaras
Q. Malluhi
Alessandro Savino
S. Di Carlo
Adnan Qayyum
Junaid Qadir
FedML
87
3
0
06 Jun 2024
Inference Attacks: A Taxonomy, Survey, and Promising Directions
Feng Wu
Lei Cui
Shaowen Yao
Shui Yu
256
2
0
04 Jun 2024
No Vandalism: Privacy-Preserving and Byzantine-Robust Federated Learning
Zhibo Xing
Zijian Zhang
Ziáng Zhang
Jiamou Liu
Liehuang Zhu
Giovanni Russello
FedML
130
3
0
03 Jun 2024
Seeing the Forest through the Trees: Data Leakage from Partial Transformer Gradients
Weijun Li
Xingliang Yuan
Mark Dras
PILM
136
4
0
03 Jun 2024
Amalgam: A Framework for Obfuscated Neural Network Training on the Cloud
Sifat Ut Taki
Spyridon Mastorakis
FedML
140
1
0
02 Jun 2024
Gradient Inversion of Federated Diffusion Models
Jiyue Huang
Chi Hong
Lydia Y. Chen
Stefanie Roos
FedML
122
2
0
30 May 2024
Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
Martín Bertrán
Shuai Tang
Michael Kearns
Jamie Morgenstern
Aaron Roth
Zhiwei Steven Wu
AAML
143
20
0
30 May 2024
Enhancing Security and Privacy in Federated Learning using Low-Dimensional Update Representation and Proximity-Based Defense
Wenjie Li
K. Fan
Jingyuan Zhang
Hui Li
Wei Yang Bryan Lim
Qiang Yang
AAML
FedML
135
1
0
29 May 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
137
9
0
24 May 2024
Leakage-Resilient and Carbon-Neutral Aggregation Featuring the Federated AI-enabled Critical Infrastructure
Zehang Deng
Ruoxi Sun
Minhui Xue
Sheng Wen
S. Çamtepe
Surya Nepal
Yang Xiang
123
6
0
24 May 2024
Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review
Md. Shahin Ali
M. Ahsan
Lamia Tasnim
Sadia Afrin
Koushik Biswas
Maruf Md. Sajjad Hossain
Md Mahfuz Ahmed
Ronok Hashan
Md. Khairul Islam
Shivakumar Raman
118
16
0
22 May 2024
Information Leakage from Embedding in Large Language Models
Zhipeng Wan
Anda Cheng
Yinggui Wang
Lei Wang
PILM
133
5
0
20 May 2024
Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
Yichuan Shi
Olivera Kotevska
Viktor Reshniak
Abhishek Singh
Ramesh Raskar
AAML
96
3
0
16 May 2024
Feature-based Federated Transfer Learning: Communication Efficiency, Robustness and Privacy
IEEE Transactions on Machine Learning in Communications and Networking (IEEE TMLCN), 2024
Feng Wang
M. C. Gursoy
Senem Velipasalar
151
3
0
15 May 2024
Previous
1
2
3
4
5
6
7
Next