ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02610
  4. Cited By
iDLG: Improved Deep Leakage from Gradients

iDLG: Improved Deep Leakage from Gradients

8 January 2020
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
    FedML
ArXivPDFHTML

Papers citing "iDLG: Improved Deep Leakage from Gradients"

39 / 89 papers shown
Title
Enhanced Security and Privacy via Fragmented Federated Learning
Enhanced Security and Privacy via Fragmented Federated Learning
N. Jebreel
J. Domingo-Ferrer
Alberto Blanco-Justicia
David Sánchez
FedML
26
26
0
13 Jul 2022
An Efficient Industrial Federated Learning Framework for AIoT: A Face
  Recognition Application
An Efficient Industrial Federated Learning Framework for AIoT: A Face Recognition Application
Youlong Ding
Xueyang Wu
Zhitao Li
Zeheng Wu
S. Tan
Qian Xu
Weike Pan
Qiang Yang
FedML
33
4
0
21 Jun 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
27
36
0
15 Jun 2022
Deep Leakage from Model in Federated Learning
Deep Leakage from Model in Federated Learning
Zihao Zhao
Mengen Luo
Wenbo Ding
FedML
18
14
0
10 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated
  Learning
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
28
46
0
08 Jun 2022
Recovering Private Text in Federated Learning of Language Models
Recovering Private Text in Federated Learning of Language Models
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
27
74
0
17 May 2022
AGIC: Approximate Gradient Inversion Attack on Federated Learning
AGIC: Approximate Gradient Inversion Attack on Federated Learning
Jin Xu
Chi Hong
Jiyue Huang
L. Chen
Jérémie Decouchant
AAML
FedML
19
21
0
28 Apr 2022
Analysing the Influence of Attack Configurations on the Reconstruction
  of Medical Images in Federated Learning
Analysing the Influence of Attack Configurations on the Reconstruction of Medical Images in Federated Learning
M. Dahlgaard
Morten Wehlast Jorgensen
N. Fuglsang
Hiba Nassar
FedML
AAML
33
2
0
25 Apr 2022
Multi-Task Distributed Learning using Vision Transformer with Random
  Patch Permutation
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation
Sangjoon Park
Jong Chul Ye
FedML
MedIm
42
19
0
07 Apr 2022
Adaptive Aggregation For Federated Learning
Adaptive Aggregation For Federated Learning
K. R. Jayaram
Vinod Muthusamy
Gegi Thomas
Ashish Verma
Mark Purcell
FedML
25
16
0
23 Mar 2022
Federated Class-Incremental Learning
Federated Class-Incremental Learning
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Xiao Wang
Qi Zhu
CLL
FedML
24
168
0
22 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image
  Segmentation
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
33
51
0
18 Mar 2022
Similarity-based Label Inference Attack against Training and Inference
  of Split Learning
Similarity-based Label Inference Attack against Training and Inference of Split Learning
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
24
26
0
10 Mar 2022
Privacy Leakage of Adversarial Training Models in Federated Learning
  Systems
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
27
15
0
21 Feb 2022
Practical Challenges in Differentially-Private Federated Survival
  Analysis of Medical Data
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
14
11
0
08 Feb 2022
An Interpretable Federated Learning-based Network Intrusion Detection
  Framework
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Tian Dong
Song Li
Han Qiu
Jialiang Lu
FedML
14
16
0
10 Jan 2022
Gradient Leakage Attack Resilient Deep Learning
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
22
46
0
25 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive
  Survey
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
28
9
0
19 Dec 2021
Location Leakage in Federated Signal Maps
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
20
5
0
07 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao-quan Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
12
269
0
30 Nov 2021
Understanding Training-Data Leakage from Gradients in Neural Networks
  for Image Classification
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
9
24
0
19 Nov 2021
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining
  Competitive Performance in Federated Learning
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
19
68
0
16 Nov 2021
Bayesian Framework for Gradient Leakage
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
19
41
0
08 Nov 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning
  with Modified Models
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
32
145
0
25 Oct 2021
UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
  Inference Attacks Against Split Learning
UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label Inference Attacks Against Split Learning
Ege Erdogan
Alptekin Kupcu
A. E. Cicek
FedML
MIACV
35
77
0
20 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
24
100
0
10 Aug 2021
Understanding Clipping for Federated Learning: Convergence and
  Client-Level Differential Privacy
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
22
91
0
25 Jun 2021
From Distributed Machine Learning to Federated Learning: A Survey
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
51
243
0
29 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
25
460
0
15 Apr 2021
Differentially Private Federated Learning for Cancer Prediction
Differentially Private Federated Learning for Cancer Prediction
C. Béguier
Jean Ogier du Terrail
I. Meah
M. Andreux
Eric W. Tramel
FedML
19
19
0
08 Jan 2021
Fidel: Reconstructing Private Training Samples from Weight Updates in
  Federated Learning
Fidel: Reconstructing Private Training Samples from Weight Updates in Federated Learning
David Enthoven
Zaid Al-Ars
FedML
55
14
0
01 Jan 2021
Provable Defense against Privacy Leakage in Federated Learning from
  Representation Perspective
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
19
163
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
R-GAP: Recursive Gradient Attack on Privacy
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
6
132
0
15 Oct 2020
LotteryFL: Personalized and Communication-Efficient Federated Learning
  with Lottery Ticket Hypothesis on Non-IID Datasets
LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets
Ang Li
Jingwei Sun
Binghui Wang
Lin Duan
Sicheng Li
Yiran Chen
H. Li
FedML
6
125
0
07 Aug 2020
Dataset Condensation with Gradient Matching
Dataset Condensation with Gradient Matching
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
36
472
0
10 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
  to Non-IID Data
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
21
227
0
22 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
73
25
0
27 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive
  Strategies
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
57
50
0
01 Apr 2020
Previous
12