Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 334 papers shown
Title
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Zhuohang Li
Jiaxin Zhang
Lu Liu
Jian-Dong Liu
FedML
105
130
0
29 Mar 2022
Adaptive Aggregation For Federated Learning
K.R. Jayaram
Vinod Muthusamy
Gegi Thomas
Ashish Verma
Mark Purcell
FedML
130
20
0
23 Mar 2022
Federated Class-Incremental Learning
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Tianlin Li
Qi Zhu
CLL
FedML
162
209
0
22 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
101
55
0
18 Mar 2022
No Free Lunch Theorem for Security and Utility in Federated Learning
Xiaojin Zhang
Hanlin Gu
Lixin Fan
Kai Chen
Qiang Yang
FedML
111
68
0
11 Mar 2022
Similarity-based Label Inference Attack against Training and Inference of Split Learning
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
109
32
0
10 Mar 2022
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
SILM
AAML
79
19
0
01 Mar 2022
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
140
16
0
21 Feb 2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
103
66
0
17 Feb 2022
OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
FedML
104
6
0
15 Feb 2022
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
74
12
0
08 Feb 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
117
246
0
20 Jan 2022
Get your Foes Fooled: Proximal Gradient Split Learning for Defense against Model Inversion Attacks on IoMT data
Sunder Ali Khowaja
I. Lee
Kapal Dev
M. Jarwar
N. Qureshi
AAML
120
19
0
12 Jan 2022
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Tian Dong
Song Li
Han Qiu
Jialiang Lu
FedML
67
17
0
10 Jan 2022
APRIL: Finding the Achilles' Heel on Privacy for Vision Transformers
Jiahao Lu
Xi Sheryl Zhang
Tianli Zhao
Xiangyu He
Jian Cheng
ViT
PILM
80
26
0
28 Dec 2021
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
94
52
0
25 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
119
12
0
19 Dec 2021
Batch Label Inference and Replacement Attacks in Black-Boxed Vertical Federated Learning
Yang Liu
Tianyuan Zou
Yan Kang
Wenhan Liu
Yuanqin He
Zhi-qian Yi
Qian Yang
FedML
AAML
150
22
0
10 Dec 2021
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
103
5
0
07 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
172
201
0
06 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
111
301
0
30 Nov 2021
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
81
26
0
19 Nov 2021
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
163
80
0
16 Nov 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
77
47
0
08 Nov 2021
Federated Learning Attacks Revisited: A Critical Discussion of Gaps, Assumptions, and Evaluation Setups
A. Wainakh
Ephraim Zimmer
Sandeep Subedi
Jens Keim
Tim Grube
Shankar Karuppayah
Alejandro Sánchez Guinea
Max Mühlhäuser
88
14
0
05 Nov 2021
Federated Split Vision Transformer for COVID-19 CXR Diagnosis using Task-Agnostic Training
Sangjoon Park
Gwanghyun Kim
Jeongsol Kim
Boah Kim
Jong Chul Ye
ViT
FedML
MedIm
126
32
0
02 Nov 2021
Revealing and Protecting Labels in Distributed Training
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
46
26
0
31 Oct 2021
Efficient passive membership inference attack in federated learning
Oualid Zari
Chuan Xu
Giovanni Neglia
FedML
92
36
0
31 Oct 2021
Dynamic Differential-Privacy Preserving SGD
Jian Du
Song Li
Xiangyi Chen
Siheng Chen
Mingyi Hong
114
40
0
30 Oct 2021
Gradient Inversion with Generative Image Prior
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
91
168
0
28 Oct 2021
CAFE: Catastrophic Data Leakage in Vertical Federated Learning
Xiao Jin
Pin-Yu Chen
Chia-Yi Hsu
Chia-Mu Yu
Tianyi Chen
FedML
139
168
0
26 Oct 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
165
157
0
25 Oct 2021
Towards General Deep Leakage in Federated Learning
Jiahui Geng
Yongli Mou
Feifei Li
Qing Li
Oya Beyan
Stefan Decker
Chunming Rong
FedML
97
61
0
18 Oct 2021
Federated Deep Learning with Bayesian Privacy
Hanlin Gu
Lixin Fan
Bowen Li Jie Li
Yan Kang
Yuan Yao
Qiang Yang
FedML
175
23
0
27 Sep 2021
Dropout against Deep Leakage from Gradients
Yanchong Zheng
FedML
70
4
0
25 Aug 2021
Federated Learning for Privacy-Preserving Open Innovation Future on Digital Health
Guodong Long
Tao Shen
Yue Tan
Leah Gerrard
Allison Clarke
Jing Jiang
FedML
106
48
0
24 Aug 2021
UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label Inference Attacks Against Split Learning
Ege Erdogan
Alptekin Kupcu
A. E. Cicek
FedML
MIACV
86
93
0
20 Aug 2021
A Novel Attribute Reconstruction Attack in Federated Learning
Lingjuan Lyu
Chong Chen
AAML
80
41
0
16 Aug 2021
Efficient Byzantine-Resilient Stochastic Gradient Desce
Kaiyun Li
Xiaojun Chen
Ye Dong
Peng Zhang
Dakui Wang
Shuai Zeng
40
0
0
15 Aug 2021
PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
MIACV
99
38
0
10 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
100
113
0
10 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
252
226
0
12 Jul 2021
Differentially private federated deep learning for multi-site medical image segmentation
Alexander Ziller
Dmitrii Usynin
Nicolas W. Remerscheid
Moritz Knolle
Marcus R. Makowski
R. Braren
Daniel Rueckert
Georgios Kaissis
FedML
95
25
0
06 Jul 2021
Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy
Yipeng Zhou
Xuezheng Liu
Yao Fu
Di Wu
Chao Li
Shui Yu
FedML
82
2
0
05 Jul 2021
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
107
103
0
25 Jun 2021
Federated Learning on Non-IID Data: A Survey
Hangyu Zhu
Jinjin Xu
Shiqing Liu
Yaochu Jin
OOD
FedML
166
903
0
12 Jun 2021
Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Soteris Demetriou
Deniz Gündüz
Hamed Haddadi
FedML
107
3
0
28 May 2021
Separation of Powers in Federated Learning
P. Cheng
Kevin Eykholt
Zhongshu Gu
Hani Jamjoom
K.R. Jayaram
Enriquillo Valdez
Ashish Verma
FedML
63
13
0
19 May 2021
User-Level Label Leakage from Gradients in Federated Learning
A. Wainakh
Fabrizio G. Ventola
Till Müßig
Jens Keim
Carlos Garcia Cordero
Ephraim Zimmer
Tim Grube
Kristian Kersting
M. Mühlhäuser
FedML
AAML
76
56
0
19 May 2021
PPCA: Privacy-preserving Principal Component Analysis Using Secure Multiparty Computation(MPC)
Xiaoyu Fan
Guosai Wang
Kung Chen
Xu He
Weijiang Xu
75
9
0
17 May 2021
Previous
1
2
3
4
5
6
7
Next