Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 349 papers shown
Title
Deep Leakage from Model in Federated Learning
Zihao Zhao
Mengen Luo
Wenbo Ding
FedML
85
17
0
10 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
USENIX Security Symposium (USENIX Security), 2022
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
165
63
0
08 Jun 2022
THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption
Findings (Findings), 2022
Tianyu Chen
Hangbo Bao
Shaohan Huang
Li Dong
Binxing Jiao
Daxin Jiang
Haoyi Zhou
Jianxin Li
Furu Wei
203
123
0
01 Jun 2022
Encoded Gradients Aggregation against Gradient Leakage in Federated Learning
Dun Zeng
Shiyu Liu
Siqi Liang
Zonghang Li
Hongya Wang
Irwin King
Zenglin Xu
FedML
113
0
0
26 May 2022
Incentivizing Federated Learning
Shuyu Kong
You Li
Hai Zhou
FedML
157
8
0
22 May 2022
BlockDFL: A Blockchain-based Fully Decentralized Peer-to-Peer Federated Learning Framework
The Web Conference (WWW), 2022
Zhen Qin
Xueqiang Yan
Mengchu Zhou
Shuiguang Deng
135
28
0
21 May 2022
Recovering Private Text in Federated Learning of Language Models
Neural Information Processing Systems (NeurIPS), 2022
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
171
90
0
17 May 2022
Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-Ray Data
Italian National Conference on Sensors (INS), 2022
Joceline Ziegler
Bjarne Pfitzner
H. Schulz
A. Saalbach
B. Arnrich
FedML
89
20
0
06 May 2022
AGIC: Approximate Gradient Inversion Attack on Federated Learning
IEEE International Symposium on Reliable Distributed Systems (SRDS), 2022
Jin Xu
Chi Hong
Jiyue Huang
L. Chen
Jérémie Decouchant
AAML
FedML
172
27
0
28 Apr 2022
Enhancing Privacy against Inversion Attacks in Federated Learning by using Mixing Gradients Strategies
Shaltiel Eloul
Fran Silavong
Sanket Kamthe
Antonios Georgiadis
Sean J. Moran
FedML
72
7
0
26 Apr 2022
Analysing the Influence of Attack Configurations on the Reconstruction of Medical Images in Federated Learning
M. Dahlgaard
Morten Wehlast Jorgensen
N. Fuglsang
Hiba Nassar
FedML
AAML
128
3
0
25 Apr 2022
FederatedScope: A Flexible Federated Learning Platform for Heterogeneity
Proceedings of the VLDB Endowment (PVLDB), 2022
Yuexiang Xie
Zhen Wang
Dawei Gao
Daoyuan Chen
Liuyi Yao
Weirui Kuang
Yaliang Li
Bolin Ding
Jingren Zhou
FedML
255
103
0
11 Apr 2022
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation
IEEE Transactions on Medical Imaging (IEEE TMI), 2022
Sangjoon Park
Jong Chul Ye
FedML
MedIm
150
22
0
07 Apr 2022
DeFTA: A Plug-and-Play Decentralized Replacement for FedAvg
Yuhao Zhou
M. Shi
Yuxin Tian
Qing Ye
Jiancheng Lv
FedML
73
2
0
06 Apr 2022
Perfectly Accurate Membership Inference by a Dishonest Central Server in Federated Learning
IEEE Transactions on Dependable and Secure Computing (TDSC), 2022
Georg Pichler
Marco Romanelli
L. Rey Vega
Pablo Piantanida
FedML
102
11
0
30 Mar 2022
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Computer Vision and Pattern Recognition (CVPR), 2022
Zhuohang Li
Jiaxin Zhang
Lu Liu
Jian-Dong Liu
FedML
161
142
0
29 Mar 2022
Adaptive Aggregation For Federated Learning
K.R. Jayaram
Vinod Muthusamy
Gegi Thomas
Ashish Verma
Mark Purcell
FedML
170
20
0
23 Mar 2022
Federated Class-Incremental Learning
Computer Vision and Pattern Recognition (CVPR), 2022
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Tianlin Li
Qi Zhu
CLL
FedML
214
229
0
22 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
Computer Vision and Pattern Recognition (CVPR), 2022
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
113
63
0
18 Mar 2022
No Free Lunch Theorem for Security and Utility in Federated Learning
ACM Transactions on Intelligent Systems and Technology (ACM TIST), 2022
Xiaojin Zhang
Hanlin Gu
Lixin Fan
Kai Chen
Qiang Yang
FedML
131
73
0
11 Mar 2022
Similarity-based Label Inference Attack against Training and Inference of Split Learning
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2022
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
125
32
0
10 Mar 2022
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks
ACM Transactions on Privacy and Security (TOPS), 2022
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
SILM
AAML
95
23
0
01 Mar 2022
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
156
16
0
21 Feb 2022
LAMP: Extracting Text from Gradients with Language Model Priors
Neural Information Processing Systems (NeurIPS), 2022
Mislav Balunović
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
132
73
0
17 Feb 2022
OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification
Proceedings of the VLDB Endowment (PVLDB), 2022
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
FedML
144
6
0
15 Feb 2022
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
ACM Conference on Health, Inference, and Learning (ACM CHIL), 2022
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
90
13
0
08 Feb 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Information Fusion (Inf. Fusion), 2022
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
129
263
0
20 Jan 2022
Get your Foes Fooled: Proximal Gradient Split Learning for Defense against Model Inversion Attacks on IoMT data
IEEE Transactions on Network Science and Engineering (IEEE T-NSE), 2022
Sunder Ali Khowaja
I. Lee
Kapal Dev
M. Jarwar
N. Qureshi
AAML
152
19
0
12 Jan 2022
An Interpretable Federated Learning-based Network Intrusion Detection Framework
Tian Dong
Song Li
Han Qiu
Jialiang Lu
FedML
91
20
0
10 Jan 2022
APRIL: Finding the Achilles' Heel on Privacy for Vision Transformers
Computer Vision and Pattern Recognition (CVPR), 2021
Jiahao Lu
Xi Sheryl Zhang
Tianli Zhao
Xiangyu He
Jian Cheng
ViT
PILM
104
28
0
28 Dec 2021
Gradient Leakage Attack Resilient Deep Learning
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2021
Wenqi Wei
Ling Liu
SILM
PILM
AAML
118
57
0
25 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
163
12
0
19 Dec 2021
Batch Label Inference and Replacement Attacks in Black-Boxed Vertical Federated Learning
Yang Liu
Tianyuan Zou
Yan Kang
Wenhan Liu
Yuanqin He
Zhi-qian Yi
Qian Yang
FedML
AAML
166
22
0
10 Dec 2021
Location Leakage in Federated Signal Maps
IEEE Transactions on Mobile Computing (IEEE TMC), 2021
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
154
5
0
07 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
European Symposium on Security and Privacy (EuroS&P), 2021
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
196
214
0
06 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
143
324
0
30 Nov 2021
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
93
27
0
19 Nov 2021
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
199
82
0
16 Nov 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
128
48
0
08 Nov 2021
Federated Learning Attacks Revisited: A Critical Discussion of Gaps, Assumptions, and Evaluation Setups
Italian National Conference on Sensors (INS), 2021
A. Wainakh
Ephraim Zimmer
Sandeep Subedi
Jens Keim
Tim Grube
Shankar Karuppayah
Alejandro Sánchez Guinea
Max Mühlhäuser
104
15
0
05 Nov 2021
Federated Split Vision Transformer for COVID-19 CXR Diagnosis using Task-Agnostic Training
Sangjoon Park
Gwanghyun Kim
Jeongsol Kim
Boah Kim
Jong Chul Ye
ViT
FedML
MedIm
161
36
0
02 Nov 2021
Revealing and Protecting Labels in Distributed Training
Neural Information Processing Systems (NeurIPS), 2021
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
58
28
0
31 Oct 2021
Efficient passive membership inference attack in federated learning
Oualid Zari
Chuan Xu
Giovanni Neglia
FedML
124
37
0
31 Oct 2021
Dynamic Differential-Privacy Preserving SGD
Jian Du
Song Li
Xiangyi Chen
Siheng Chen
Mingyi Hong
134
41
0
30 Oct 2021
Gradient Inversion with Generative Image Prior
Neural Information Processing Systems (NeurIPS), 2021
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
107
175
0
28 Oct 2021
CAFE: Catastrophic Data Leakage in Vertical Federated Learning
Xiao Jin
Pin-Yu Chen
Chia-Yi Hsu
Chia-Mu Yu
Tianyi Chen
FedML
191
179
0
26 Oct 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
198
161
0
25 Oct 2021
Towards General Deep Leakage in Federated Learning
Fauzan Farooqui
Yongli Mou
Feifei Li
Qing Li
Oya Beyan
Stefan Decker
Chunming Rong
FedML
130
61
0
18 Oct 2021
Federated Deep Learning with Bayesian Privacy
Hanlin Gu
Lixin Fan
Bowen Li Jie Li
Yan Kang
Xingtai Lv
Qiang Yang
FedML
211
23
0
27 Sep 2021
Dropout against Deep Leakage from Gradients
Yanchong Zheng
FedML
90
4
0
25 Aug 2021
Previous
1
2
3
4
5
6
7
Next