Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 352 papers shown
Title
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Neural Information Processing Systems (NeurIPS), 2023
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
196
12
0
22 Sep 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Neural Information Processing Systems (NeurIPS), 2023
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
282
9
0
22 Sep 2023
Expressive variational quantum circuits provide inherent privacy in federated learning
Niraj Kumar
Jamie Heredge
Changhao Li
Shaltiel Eloul
Shree Hari Sureshbabu
Marco Pistoia
FedML
270
11
0
22 Sep 2023
Client-side Gradient Inversion Against Federated Learning from Poisoning
Jiaheng Wei
Yanjun Zhang
Leo Yu Zhang
Chao Chen
Shirui Pan
Kok-Leong Ong
Jinchao Zhang
Yang Xiang
AAML
120
5
0
14 Sep 2023
SABLE: Secure And Byzantine robust LEarning
Antoine Choffrut
R. Guerraoui
Rafael Pinot
Renaud Sirdey
John Stephan
Martin Zuber
AAML
284
2
0
11 Sep 2023
Privacy Preserving Federated Learning with Convolutional Variational Bottlenecks
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
AAML
191
7
0
08 Sep 2023
Adversarial Predictions of Data Distributions Across Federated Internet-of-Things Devices
World Forum on Internet of Things (WF-IoT), 2023
Samir Rajani
Dario Dematties
Nathaniel Hudson
Kyle Chard
N. Ferrier
R. Sankaran
P. Beckman
FedML
94
0
0
28 Aug 2023
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Proceedings of the VLDB Endowment (PVLDB), 2023
Fumiyuki Kato
Li Xiong
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
FedML
172
7
0
23 Aug 2023
Approximate and Weighted Data Reconstruction Attack in Federated Learning
Yongcun Song
Ziqi Wang
Enrique Zuazua
AAML
FedML
138
6
0
13 Aug 2023
FLShield: A Validation Based Federated Learning Framework to Defend Against Poisoning Attacks
IEEE Symposium on Security and Privacy (IEEE S&P), 2023
Ehsanul Kabir
Zeyu Song
Md Rafi Ur Rashid
Shagufta Mehnaz
114
18
0
10 Aug 2023
Feature Matching Data Synthesis for Non-IID Federated Learning
IEEE Transactions on Mobile Computing (IEEE TMC), 2023
Zijian Li
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
101
29
0
09 Aug 2023
GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization
IEEE International Conference on Computer Vision (ICCV), 2023
Hao Fang
Bin Chen
Xuan Wang
Zhi Wang
Shutao Xia
219
49
0
09 Aug 2023
FLIPS: Federated Learning using Intelligent Participant Selection
International Middleware Conference (Middleware), 2023
R. Bhope
K.R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
198
5
0
07 Aug 2023
Label Inference Attacks against Node-level Vertical Federated GNNs
Marco Arazzi
Mauro Conti
Stefanos Koffas
Marina Krček
Antonino Nocera
S. Picek
Jing Xu
FedML
AAML
177
1
0
04 Aug 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
IEEE Transactions on Mobile Computing (IEEE TMC), 2023
Natalie Lang
Stefano Rini
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
297
7
0
01 Aug 2023
On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
International Journal of Computer Vision (IJCV), 2023
Mingyuan Fan
Chengyu Wang
Cen Chen
Yang Liu
Jun Huang
HILM
159
9
0
31 Jul 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Conference on Computer and Communications Security (CCS), 2023
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
275
17
0
27 Jul 2023
Mitigating Cross-client GANs-based Attack in Federated Learning
Hong Huang
Xinyu Lei
Tao Xiang
AAML
253
2
0
25 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
222
36
0
20 Jul 2023
Secure and Fast Asynchronous Vertical Federated Learning via Cascaded Hybrid Optimization
Machine-mediated learning (ML), 2023
Ganyu Wang
Qingsong Zhang
Li Xiang
Boyu Wang
Bin Gu
Charles Ling
FedML
157
6
0
28 Jun 2023
Federated Generative Learning with Foundation Models
Jie Zhang
Xiaohua Qi
Bo Zhao
FedML
180
26
0
28 Jun 2023
Practical Privacy-Preserving Gaussian Process Regression via Secret Sharing
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Jinglong Luo
Yehong Zhang
Jiaqi Zhang
Shuang Qin
Haibo Wang
Yue Yu
Zenglin Xu
125
7
0
26 Jun 2023
Privacy and Fairness in Federated Learning: on the Perspective of Trade-off
ACM Computing Surveys (ACM Comput. Surv.), 2023
Huiqiang Chen
Tianqing Zhu
Tao Zhang
Wanlei Zhou
Philip S. Yu
FedML
176
66
0
25 Jun 2023
Your Room is not Private: Gradient Inversion Attack on Reinforcement Learning
IEEE International Conference on Robotics and Automation (ICRA), 2023
Miao Li
Wenhao Ding
Ding Zhao
AAML
134
3
0
15 Jun 2023
Temporal Gradient Inversion Attacks with Robust Optimization
IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2023
Bowen Li Jie Li
Hanlin Gu
Ruoxin Chen
Jie Li
Chentao Wu
Na Ruan
Xueming Si
Lixin Fan
AAML
124
3
0
13 Jun 2023
SRATTA : Sample Re-ATTribution Attack of Secure Aggregation in Federated Learning
International Conference on Machine Learning (ICML), 2023
Tanguy Marchand
Regis Loeb
Ulysse Marteau-Ferey
Jean Ogier du Terrail
Arthur Pignet
FedML
139
5
0
13 Jun 2023
FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users
Y. Rahulamathavan
Charuka Herath
Xiaolan Liu
S. Lambotharan
Carsten Maple
202
19
0
08 Jun 2023
FedVal: Different good or different bad in federated learning
Viktor Valadi
Xinchi Qiu
Pedro Gusmão
Nicholas D. Lane
Mina Alibeigi
FedML
AAML
155
7
0
06 Jun 2023
Avoid Adversarial Adaption in Federated Learning by Multi-Metric Investigations
T. Krauß
Alexandra Dmitrienko
AAML
176
6
0
06 Jun 2023
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
AAML
FedML
268
11
0
05 Jun 2023
FedCIP: Federated Client Intellectual Property Protection with Traitor Tracking
Junchuan Liang
Rong Wang
FedML
146
19
0
02 Jun 2023
Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning
International Conference on Machine Learning (ICML), 2023
Junyi Zhu
Ruicong Yao
Matthew B. Blaschko
FedML
205
12
0
31 May 2023
A Meta-learning Framework for Tuning Parameters of Protection Mechanisms in Trustworthy Federated Learning
ACM Transactions on Intelligent Systems and Technology (ACM TIST), 2023
Xiaojin Zhang
Weijing Chen
Lixin Fan
Kai Chen
Qiang Yang
FedML
207
9
0
28 May 2023
Secure Vertical Federated Learning Under Unreliable Connectivity
Xinchi Qiu
Heng Pan
Wanru Zhao
Yan Gao
Pedro Gusmão
William F. Shen
Chenyang Ma
Nicholas D. Lane
FedML
162
3
0
26 May 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
143
10
0
24 May 2023
Evaluating Privacy Leakage in Split Learning
Xinchi Qiu
Ilias Leontiadis
Luca Melis
Alex Sablayrolles
Pierre Stock
184
6
0
22 May 2023
Efficient Vertical Federated Learning with Secure Aggregation
Xinchi Qiu
Heng Pan
Wanru Zhao
Chenyang Ma
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
121
4
0
18 May 2023
PrivaScissors: Enhance the Privacy of Collaborative Inference through the Lens of Mutual Information
Lin Duan
Jingwei Sun
Yiran Chen
M. Gorlatova
81
5
0
17 May 2023
Securing Distributed SGD against Gradient Leakage Threats
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2023
Wenqi Wei
Ling Liu
Jingya Zhou
Ka-Ho Chow
Yanzhao Wu
FedML
112
26
0
10 May 2023
Towards Achieving Near-optimal Utility for Privacy-Preserving Federated Learning via Data Generation and Parameter Distortion
Xiaojin Zhang
Kai Chen
Qian Yang
FedML
132
6
0
07 May 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
FedML
288
2
0
06 May 2023
Sentence Embedding Leaks More Information than You Expect: Generative Embedding Inversion Attack to Recover the Whole Sentence
Annual Meeting of the Association for Computational Linguistics (ACL), 2023
Haoran Li
Mingshi Xu
Yangqiu Song
197
69
0
04 May 2023
FedCBO: Reaching Group Consensus in Clustered Federated Learning through Consensus-based Optimization
Journal of machine learning research (JMLR), 2023
J. Carrillo
Nicolas García Trillos
Sixu Li
Yuhua Zhu
FedML
100
23
0
04 May 2023
Optimizing Privacy, Utility and Efficiency in Constrained Multi-Objective Federated Learning
Weijing Chen
Hanlin Gu
Xingxing Tang
Yuanqin He
Yuzhu Zhang
Jinnan He
Yuxing Han
Lixin Fan
Kai Chen
Qiang Yang
FedML
250
19
0
29 Apr 2023
Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack
Computer Vision and Pattern Recognition (CVPR), 2023
Hideaki Takahashi
Jingjing Liu
Yang Liu
FedML
142
13
0
22 Apr 2023
A Game-theoretic Framework for Privacy-preserving Federated Learning
ACM Transactions on Intelligent Systems and Technology (ACM TIST), 2023
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
191
5
0
11 Apr 2023
RecUP-FL: Reconciling Utility and Privacy in Federated Learning via User-configurable Privacy Defense
ACM Asia Conference on Computer and Communications Security (AsiaCCS), 2023
Yue-li Cui
Syed Imran Ali Meerza
Zhuohang Li
Luyang Liu
Jiaxin Zhang
Jian-Dong Liu
AAML
FedML
155
5
0
11 Apr 2023
Secure Federated Learning against Model Poisoning Attacks via Client Filtering
D. Yaldiz
Tuo Zhang
Salman Avestimehr
AAML
FedML
188
16
0
31 Mar 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
BigData Congress [Services Society] (BSS), 2023
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
120
8
0
28 Mar 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Computer Vision and Pattern Recognition (CVPR), 2023
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
102
14
0
27 Mar 2023
Previous
1
2
3
4
5
6
7
8
Next