Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 349 papers shown
Title
Prospects of Privacy Advantage in Quantum Machine Learning
Jamie Heredge
Niraj Kumar
Dylan Herman
Shouvanik Chakrabarti
Romina Yalovetzky
Shree Hari Sureshbabu
Changhao Li
Marco Pistoia
155
7
0
14 May 2024
A Survey on Privacy-Preserving Caching at Network Edge: Classification, Solutions, and Challenges
ACM Computing Surveys (ACM CSUR), 2024
Xianzhi Zhang
Yipeng Zhou
Di Wu
Shazia Riaz
Quan Z. Sheng
Di Wu
Linchang Xiao
71
7
0
03 May 2024
Recovering Labels from Local Updates in Federated Learning
Huancheng Chen
H. Vikalo
FedML
AAML
71
7
0
02 May 2024
Advances and Open Challenges in Federated Learning with Foundation Models
Chao Ren
Han Yu
Hongyi Peng
Xiaoli Tang
Anran Li
...
A. Tan
Bo Zhao
Xiaoxiao Li
Zengxiang Li
Qiang Yang
FedML
AIFin
AI4CE
242
27
0
23 Apr 2024
Beyond Noise: Privacy-Preserving Decentralized Learning with Virtual Nodes
Sayan Biswas
Mathieu Even
Anne-Marie Kermarrec
Laurent Massoulie
Rafael Pires
Rishi Sharma
M. Vos
127
5
0
15 Apr 2024
On the Efficiency of Privacy Attacks in Federated Learning
Nawrin Tabassum
Ka-Ho Chow
Xuyu Wang
Wenbin Zhang
Yanzhao Wu
FedML
107
5
0
15 Apr 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
132
27
0
05 Apr 2024
Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning
IEEE Symposium on Security and Privacy (S&P), 2024
Hongsheng Hu
Shuo Wang
Tian Dong
Minhui Xue
AAML
141
40
0
04 Apr 2024
Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning
Joshua C. Zhao
Ahaan Dabholkar
Atul Sharma
Saurabh Bagchi
FedML
117
3
0
26 Mar 2024
Enabling Privacy-preserving Model Evaluation in Federated Learning via Fully Homomorphic Encryption
Cem Ata Baykara
Ali Burak Ünal
Mete Akgün
FedML
67
0
0
21 Mar 2024
Efficient and Privacy-Preserving Federated Learning based on Full Homomorphic Encryption
Yuqi Guo
Lin Li
Zhongxiang Zheng
Hanrui Yun
Ruoyan Zhang
Xiaolin Chang
Zhixuan Gao
FedML
90
5
0
18 Mar 2024
Pencil: Private and Extensible Collaborative Learning without the Non-Colluding Assumption
Xuanqi Liu
Zhuotao Liu
Qi Li
Ke Xu
Mingwei Xu
98
11
0
17 Mar 2024
Adaptive Hybrid Masking Strategy for Privacy-Preserving Face Recognition Against Model Inversion Attack
Yinggui Wang
Yuanqing Huang
Jianshu Li
Le Yang
Kai Song
Lei Wang
AAML
PICV
170
1
0
14 Mar 2024
RAF-GI: Towards Robust, Accurate and Fast-Convergent Gradient Inversion Attack in Federated Learning
Can Liu
Jin Wang
Dong-Yang Yu
AAML
59
1
0
13 Mar 2024
MGIC: A Multi-Label Gradient Inversion Attack based on Canny Edge Detection on Federated Learning
Can Liu
Jin Wang
154
1
0
13 Mar 2024
Fluent: Round-efficient Secure Aggregation for Private Federated Learning
Xincheng Li
Jianting Ning
G. Poh
Leo Yu Zhang
Xinchun Yin
Tianwei Zhang
FedML
98
2
0
10 Mar 2024
SPEAR:Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
138
12
0
06 Mar 2024
Inf2Guard: An Information-Theoretic Framework for Learning Privacy-Preserving Representations against Inference Attacks
Sayedeh Leila Noorbakhsh
Binghui Zhang
Yuan Hong
Binghui Wang
AAML
174
14
0
04 Mar 2024
PrivatEyes: Appearance-based Gaze Estimation Using Federated Secure Multi-Party Computation
Mayar Elfares
Pascal Reisert
Zhiming Hu
Wenwu Tang
Ralf Küsters
Andreas Bulling
FedML
88
7
0
29 Feb 2024
How to Privately Tune Hyperparameters in Federated Learning? Insights from a Benchmark Study
Natalija Mitic
Apostolos Pyrgelis
Sinem Sav
FedML
207
2
0
25 Feb 2024
Privacy Attacks in Decentralized Learning
Abdellah El Mrini
Edwige Cyffers
A. Bellet
208
8
0
15 Feb 2024
Towards Eliminating Hard Label Constraints in Gradient Inversion Attacks
International Conference on Learning Representations (ICLR), 2024
Yanbo Wang
Jian Liang
Ran He
AAML
107
7
0
05 Feb 2024
Survey of Privacy Threats and Countermeasures in Federated Learning
M. Hayashitani
Junki Mori
Isamu Teranishi
FedML
220
1
0
01 Feb 2024
Revisiting Gradient Pruning: A Dual Realization for Defending against Gradient Attacks
Lulu Xue
Shengshan Hu
Rui-Qing Zhao
Leo Yu Zhang
Shengqing Hu
Lichao Sun
Dezhong Yao
AAML
121
7
0
30 Jan 2024
Unraveling Attacks in Machine Learning-based IoT Ecosystems: A Survey and the Open Libraries Behind Them
Chao-Jung Liu
Boxi Chen
Wei Shao
Chris Zhang
Kelvin Wong
Yi Zhang
186
6
0
22 Jan 2024
AIJack: Let's Hijack AI! Security and Privacy Risk Simulator for Machine Learning
Hideaki Takahashi
SILM
154
2
0
29 Dec 2023
A Theoretical Analysis of Efficiency Constrained Utility-Privacy Bi-Objective Optimization in Federated Learning
Hanlin Gu
Xinyuan Zhao
Gongxi Zhu
Yuxing Han
Yan Kang
Lixin Fan
Qiang Yang
FedML
109
1
0
27 Dec 2023
Federated Continual Learning via Knowledge Fusion: A Survey
Xin Yang
Hao Yu
Xin Gao
Hao Wang
Junbo Zhang
Tianrui Li
FedML
149
69
0
27 Dec 2023
FedDMF: Privacy-Preserving User Attribute Prediction using Deep Matrix Factorization
Ming Cheung
64
0
0
24 Dec 2023
Foreseeing Reconstruction Quality of Gradient Inversion: An Optimization Perspective
H. Hong
Yooshin Cho
Hanbyel Cho
Jaesung Ahn
Junmo Kim
87
1
0
19 Dec 2023
PPIDSG: A Privacy-Preserving Image Distribution Sharing Scheme with GAN in Federated Learning
AAAI Conference on Artificial Intelligence (AAAI), 2023
Yuting Ma
Yuanzhi Yao
Xiaohua Xu
FedML
89
7
0
16 Dec 2023
Privacy-Aware Document Visual Question Answering
IEEE International Conference on Document Analysis and Recognition (ICDAR), 2023
Rubèn Pérez Tito
Khanh Nguyen
Marlon Tobaben
Raouf Kerkouche
Mohamed Ali Souibgui
...
Lei Kang
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
138
15
0
15 Dec 2023
Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx
Trung-Hieu Hoang
Jordan D. Fuhrman
Ravi K. Madduri
Miao Li
Pranshu Chaturvedi
...
Kibaek Kim
Minseok Ryu
Ryan Chard
Eliu A. Huerta
Maryellen L. Giger
137
5
0
14 Dec 2023
Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer Inputs of Language Models in Federated Learning
Jianwei Li
Sheng Liu
Qi Lei
PILM
SILM
AAML
142
4
0
10 Dec 2023
Privacy-preserving quantum federated learning via gradient hiding
Changhao Li
Niraj Kumar
Zhixin Song
Shouvanik Chakrabarti
Marco Pistoia
FedML
169
30
0
07 Dec 2023
Exploring the Robustness of Decentralized Training for Large Language Models
Lin Lu
Chenxi Dai
Wangcheng Tao
Binhang Yuan
Yanan Sun
Pan Zhou
122
1
0
01 Dec 2023
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
173
30
0
27 Nov 2023
OASIS: Offsetting Active Reconstruction Attacks in Federated Learning
IEEE International Conference on Distributed Computing Systems (ICDCS), 2023
Tre' R. Jeter
Truc D. T. Nguyen
Raed Alharbi
My T. Thai
AAML
127
0
0
23 Nov 2023
Scale-MIA: A Scalable Model Inversion Attack against Secure Federated Learning via Latent Space Reconstruction
Network and Distributed System Security Symposium (NDSS), 2023
Shanghao Shi
Ning Wang
Yang Xiao
Chaoyu Zhang
Yi Shi
Y. T. Hou
W. Lou
118
13
0
10 Nov 2023
Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving for Internet of Things
Hengliang Tang
Zihang Zhao
Detian Liu
Yang Cao
Shiqiang Zhang
Siqing You
120
2
0
08 Nov 2023
PriPrune: Quantifying and Preserving Privacy in Pruned Federated Learning
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 2023
Tianyue Chu
Mengwei Yang
Nikolaos Laoutaris
A. Markopoulou
142
8
0
30 Oct 2023
Maximum Knowledge Orthogonality Reconstruction with Gradients in Federated Learning
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2023
Feng Wang
Senem Velipasalar
M. C. Gursoy
101
2
0
30 Oct 2023
Robust and Actively Secure Serverless Collaborative Learning
Neural Information Processing Systems (NeurIPS), 2023
Olive Franzese
Adam Dziedzic
Christopher A. Choquette-Choo
Mark R. Thomas
Muhammad Ahmad Kaleem
Stephan Rabanser
Cong Fang
Somesh Jha
Nicolas Papernot
Xiao Wang
OOD
103
4
0
25 Oct 2023
FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering
Md Rafi Ur Rashid
Vishnu Asutosh Dasu
Kang Gu
Najrin Sultana
Shagufta Mehnaz
AAML
FedML
284
13
0
24 Oct 2023
Privacy in Large Language Models: Attacks, Defenses and Future Directions
Haoran Li
Yulin Chen
Jinglong Luo
Yan Kang
Xiaojin Zhang
Qi Hu
Chunkit Chan
Yangqiu Song
PILM
232
58
0
16 Oct 2023
Text Embeddings Reveal (Almost) As Much As Text
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023
John X. Morris
Volodymyr Kuleshov
Vitaly Shmatikov
Alexander M. Rush
RALM
173
151
0
10 Oct 2023
Source Inference Attacks: Beyond Membership Inference Attacks in Federated Learning
IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2023
Hongsheng Hu
Xuyun Zhang
Z. Salcic
Lichao Sun
K. Choo
Gillian Dobbie
114
24
0
30 Sep 2023
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Neural Information Processing Systems (NeurIPS), 2023
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
180
11
0
22 Sep 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Neural Information Processing Systems (NeurIPS), 2023
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
244
9
0
22 Sep 2023
Expressive variational quantum circuits provide inherent privacy in federated learning
Niraj Kumar
Jamie Heredge
Changhao Li
Shaltiel Eloul
Shree Hari Sureshbabu
Marco Pistoia
FedML
254
9
0
22 Sep 2023
Previous
1
2
3
4
5
6
7
Next