Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
40 / 340 papers shown
Title
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
107
104
0
25 Jun 2021
Federated Learning on Non-IID Data: A Survey
Hangyu Zhu
Jinjin Xu
Shiqing Liu
Yaochu Jin
OOD
FedML
166
907
0
12 Jun 2021
Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Soteris Demetriou
Deniz Gündüz
Hamed Haddadi
FedML
107
3
0
28 May 2021
Separation of Powers in Federated Learning
P. Cheng
Kevin Eykholt
Zhongshu Gu
Hani Jamjoom
K.R. Jayaram
Enriquillo Valdez
Ashish Verma
FedML
68
13
0
19 May 2021
User-Level Label Leakage from Gradients in Federated Learning
A. Wainakh
Fabrizio G. Ventola
Till Müßig
Jens Keim
Carlos Garcia Cordero
Ephraim Zimmer
Tim Grube
Kristian Kersting
M. Mühlhäuser
FedML
AAML
88
56
0
19 May 2021
PPCA: Privacy-preserving Principal Component Analysis Using Secure Multiparty Computation(MPC)
Xiaoyu Fan
Guosai Wang
Kung Chen
Xu He
Weijiang Xu
79
9
0
17 May 2021
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
185
107
0
02 May 2021
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
184
282
0
29 Apr 2021
A Method to Reveal Speaker Identity in Distributed ASR Training, and How to Counter It
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
FedML
61
10
0
15 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
149
508
0
15 Apr 2021
Constrained Differentially Private Federated Learning for Low-bandwidth Devices
Raouf Kerkouche
G. Ács
C. Castelluccia
P. Genevès
80
7
0
27 Feb 2021
Proactive DP: A Multple Target Optimization Framework for DP-SGD
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
92
0
0
17 Feb 2021
Label Leakage and Protection in Two-party Split Learning
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
223
157
0
17 Feb 2021
FLOP: Federated Learning on Medical Datasets using Partial Networks
Qiang Yang
Jianyi Zhang
Weituo Hao
Gregory P. Spell
Lawrence Carin
FedML
OOD
99
90
0
10 Feb 2021
Gain without Pain: Offsetting DP-injected Nosies Stealthily in Cross-device Federated Learning
Wenzhuo Yang
Yipeng Zhou
Maio Hu
Di Wu
J. Zheng
Hui Wang
Song Guo
FedML
71
14
0
31 Jan 2021
On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration Times
Yao Fu
Yipeng Zhou
Di Wu
Shui Yu
Yonggang Wen
Chao Li
FedML
76
11
0
11 Jan 2021
Differentially Private Federated Learning for Cancer Prediction
C. Béguier
Jean Ogier du Terrail
I. Meah
M. Andreux
Eric W. Tramel
FedML
86
22
0
08 Jan 2021
Fidel: Reconstructing Private Training Samples from Weight Updates in Federated Learning
David Enthoven
Zaid Al-Ars
FedML
136
15
0
01 Jan 2021
Communication-Efficient Federated Learning with Compensated Overlap-FedAvg
Yuhao Zhou
Qing Ye
Jiancheng Lv
FedML
87
149
0
12 Dec 2020
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
144
177
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
387
409
0
07 Dec 2020
SSGD: A safe and efficient method of gradient descent
Jinhuan Duan
Xianxian Li
Shiqi Gao
Jinyan Wang
Ziliang Zhong
67
4
0
03 Dec 2020
Privacy-preserving Collaborative Learning with Automatic Transformation Search
Wei Gao
Shangwei Guo
Tianwei Zhang
Han Qiu
Yonggang Wen
Yang Liu
130
53
0
25 Nov 2020
Minimal Model Structure Analysis for Input Reconstruction in Federated Learning
Jia Qian
Hiba Nassar
Lars Kai Hansen
FedML
92
9
0
29 Oct 2020
Exploring the Security Boundary of Data Reconstruction via Neuron Exclusivity Analysis
Xudong Pan
Mi Zhang
Yifan Yan
Jiaming Zhu
Zhemin Yang
AAML
119
23
0
26 Oct 2020
Layer-wise Characterization of Latent Information Leakage in Federated Learning
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Hamed Haddadi
Soteris Demetriou
FedML
95
34
0
17 Oct 2020
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
105
144
0
15 Oct 2020
TextHide: Tackling Data Privacy in Language Understanding Tasks
Yangsibo Huang
Zhao Song
Danqi Chen
Keqin Li
Sanjeev Arora
FedML
67
57
0
12 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
177
598
0
03 Oct 2020
FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training
Yan Kang
Yang Liu
Xinle Liang
FedML
145
58
0
25 Aug 2020
LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets
Ang Li
Jingwei Sun
Binghui Wang
Lin Duan
Sicheng Li
Yiran Chen
H. Li
FedML
130
137
0
07 Aug 2020
FedBoosting: Federated Learning with Gradient Protected Boosting for Text Recognition
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Yi-Cheng Wang
FedML
169
12
0
14 Jul 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
265
547
0
10 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
161
242
0
22 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
308
29
0
27 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
119
153
0
22 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
101
55
0
01 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
251
1,338
0
31 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
354
461
0
04 Mar 2020
Learning to Prevent Leakage: Privacy-Preserving Inference in the Mobile Cloud
Shuang Zhang
Liyao Xiang
Congcong Li
Yixuan Wang
Quanshi Zhang
Zeyu Liu
Yue Liu
FedML
73
1
0
18 Dec 2019
Previous
1
2
3
4
5
6
7