Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
49 / 349 papers shown
Title
Federated Learning for Privacy-Preserving Open Innovation Future on Digital Health
Guodong Long
Tao Shen
Yue Tan
Leah Gerrard
Allison Clarke
Jing Jiang
FedML
110
54
0
24 Aug 2021
UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label Inference Attacks Against Split Learning
Ege Erdogan
Alptekin Kupcu
A. E. Cicek
FedML
MIACV
98
97
0
20 Aug 2021
A Novel Attribute Reconstruction Attack in Federated Learning
Lingjuan Lyu
Chong Chen
AAML
96
44
0
16 Aug 2021
Efficient Byzantine-Resilient Stochastic Gradient Desce
Kaiyun Li
Xiaojun Chen
Ye Dong
Peng Zhang
Dakui Wang
Shuai Zeng
68
0
0
15 Aug 2021
PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Daniel Scheliga
Patrick Mäder
M. Seeland
MIACV
123
40
0
10 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
104
128
0
10 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Shucheng Zhou
FaML
264
240
0
12 Jul 2021
Differentially private federated deep learning for multi-site medical image segmentation
Alexander Ziller
Dmitrii Usynin
Nicolas W. Remerscheid
Moritz Knolle
Marcus R. Makowski
R. Braren
Daniel Rueckert
Georgios Kaissis
FedML
99
26
0
06 Jul 2021
Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy
Yipeng Zhou
Xuezheng Liu
Yao Fu
Di Wu
Chao Li
Shui Yu
FedML
106
2
0
05 Jul 2021
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
International Conference on Machine Learning (ICML), 2021
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
123
111
0
25 Jun 2021
Federated Learning on Non-IID Data: A Survey
Hangyu Zhu
Jinjin Xu
Shiqing Liu
Yaochu Jin
OOD
FedML
184
986
0
12 Jun 2021
Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Soteris Demetriou
Deniz Gündüz
Hamed Haddadi
FedML
111
5
0
28 May 2021
Separation of Powers in Federated Learning
P. Cheng
Kevin Eykholt
Zhongshu Gu
Hani Jamjoom
K.R. Jayaram
Enriquillo Valdez
Ashish Verma
FedML
80
13
0
19 May 2021
User-Level Label Leakage from Gradients in Federated Learning
Proceedings on Privacy Enhancing Technologies (PoPETs), 2021
A. Wainakh
Fabrizio G. Ventola
Till Müßig
Jens Keim
Carlos Garcia Cordero
Ephraim Zimmer
Tim Grube
Kristian Kersting
M. Mühlhäuser
FedML
AAML
92
59
0
19 May 2021
PPCA: Privacy-preserving Principal Component Analysis Using Secure Multiparty Computation(MPC)
Xiaoyu Fan
Guosai Wang
Kung Chen
Xu He
Weijiang Xu
83
9
0
17 May 2021
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
ACM Transactions on Intelligent Systems and Technology (ACM TIST), 2021
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
246
117
0
02 May 2021
From Distributed Machine Learning to Federated Learning: A Survey
Knowledge and Information Systems (KAIS), 2021
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
220
296
0
29 Apr 2021
A Method to Reveal Speaker Identity in Distributed ASR Training, and How to Counter It
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
FedML
67
10
0
15 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Computer Vision and Pattern Recognition (CVPR), 2021
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
181
532
0
15 Apr 2021
Constrained Differentially Private Federated Learning for Low-bandwidth Devices
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Raouf Kerkouche
G. Ács
C. Castelluccia
P. Genevès
100
7
0
27 Feb 2021
Proactive DP: A Multple Target Optimization Framework for DP-SGD
International Conference on Machine Learning (ICML), 2021
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
307
0
0
17 Feb 2021
Label Leakage and Protection in Two-party Split Learning
International Conference on Learning Representations (ICLR), 2021
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
259
162
0
17 Feb 2021
FLOP: Federated Learning on Medical Datasets using Partial Networks
Knowledge Discovery and Data Mining (KDD), 2021
Qiang Yang
Jianyi Zhang
Weituo Hao
Gregory P. Spell
Lawrence Carin
FedML
OOD
123
93
0
10 Feb 2021
Gain without Pain: Offsetting DP-injected Nosies Stealthily in Cross-device Federated Learning
IEEE Internet of Things Journal (IEEE IoT Journal), 2021
Wenzhuo Yang
Yipeng Zhou
Maio Hu
Di Wu
J. Zheng
Hui Wang
Song Guo
FedML
83
14
0
31 Jan 2021
On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration Times
Yao Fu
Yipeng Zhou
Di Wu
Shui Yu
Yonggang Wen
Chao Li
FedML
92
11
0
11 Jan 2021
Differentially Private Federated Learning for Cancer Prediction
C. Béguier
Jean Ogier du Terrail
I. Meah
M. Andreux
Eric W. Tramel
FedML
90
25
0
08 Jan 2021
Fidel: Reconstructing Private Training Samples from Weight Updates in Federated Learning
David Enthoven
Zaid Al-Ars
FedML
155
15
0
01 Jan 2021
Communication-Efficient Federated Learning with Compensated Overlap-FedAvg
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2020
Yuhao Zhou
Qing Ye
Jiancheng Lv
FedML
149
162
0
12 Dec 2020
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
184
183
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Jiabo He
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
403
446
0
07 Dec 2020
SSGD: A safe and efficient method of gradient descent
Jinhuan Duan
Xianxian Li
Shiqi Gao
Jinyan Wang
Ziliang Zhong
71
4
0
03 Dec 2020
Privacy-preserving Collaborative Learning with Automatic Transformation Search
Computer Vision and Pattern Recognition (CVPR), 2020
Wei Gao
Shangwei Guo
Tianwei Zhang
Han Qiu
Yonggang Wen
Yang Liu
193
56
0
25 Nov 2020
Minimal Model Structure Analysis for Input Reconstruction in Federated Learning
Jia Qian
Hiba Nassar
Lars Kai Hansen
FedML
100
9
0
29 Oct 2020
Exploring the Security Boundary of Data Reconstruction via Neuron Exclusivity Analysis
USENIX Security Symposium (USENIX Security), 2020
Xudong Pan
Mi Zhang
Yifan Yan
Jiaming Zhu
Zhemin Yang
AAML
143
24
0
26 Oct 2020
Layer-wise Characterization of Latent Information Leakage in Federated Learning
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Hamed Haddadi
Soteris Demetriou
FedML
111
34
0
17 Oct 2020
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
213
146
0
15 Oct 2020
TextHide: Tackling Data Privacy in Language Understanding Tasks
Yangsibo Huang
Zhao Song
Danqi Chen
Keqin Li
Sanjeev Arora
FedML
95
59
0
12 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
International Conference on Learning Representations (ICLR), 2020
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
316
630
0
03 Oct 2020
FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training
Yan Kang
Yang Liu
Xinle Liang
FedML
173
63
0
25 Aug 2020
LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets
Ang Li
Jingwei Sun
Binghui Wang
Lin Duan
Sicheng Li
Yiran Chen
Xue Yang
FedML
146
145
0
07 Aug 2020
FedBoosting: Federated Learning with Gradient Protected Boosting for Text Recognition
Neurocomputing (Neurocomputing), 2020
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Yi-Cheng Wang
FedML
185
13
0
14 Jul 2020
Dataset Condensation with Gradient Matching
International Conference on Learning Representations (ICLR), 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
354
582
0
10 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
193
255
0
22 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
ACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Xinjian Luo
Xiangqi Zhu
FedML
410
29
0
27 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
127
157
0
22 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
113
56
0
01 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Neural Information Processing Systems (NeurIPS), 2020
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
415
1,407
0
31 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
406
493
0
04 Mar 2020
Learning to Prevent Leakage: Privacy-Preserving Inference in the Mobile Cloud
Shuang Zhang
Liyao Xiang
Congcong Li
Yixuan Wang
Quanshi Zhang
Zeyu Liu
Yue Liu
FedML
108
1
0
18 Dec 2019
Previous
1
2
3
4
5
6
7