Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.04001
Cited By
A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
12 January 2020
S. Fresca
Luca Dede'
Andrea Manzoni
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs"
50 / 72 papers shown
Title
Interpretable Spatial-Temporal Fusion Transformers: Multi-Output Prediction for Parametric Dynamical Systems with Time-Varying Inputs
Shuwen Sun
Lihong Feng
P. Benner
40
0
0
01 May 2025
Coarse graining and reduced order models for plume ejection dynamics
Ike Griss Salas
Megan R. Ebers
Jake Stevens-Haas
J. Nathan Kutz
41
0
0
06 Mar 2025
Reduced Order Models and Conditional Expectation -- Analysing Parametric Low-Order Approximations
Hermann G. Matthies
42
0
0
17 Feb 2025
Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models
Matteo Tomasetto
Francesco Braghin
Andrea Manzoni
OffRL
AI4CE
85
0
0
13 Dec 2024
Towards a Real-Time Simulation of Elastoplastic Deformation Using Multi-Task Neural Networks
Ruben Schmeitz
Joris Remmers
Olga Mula
Olaf van der Sluis
AI4CE
19
0
0
08 Nov 2024
Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models
Matteo Tomasetto
Andrea Manzoni
Francesco Braghin
AI4CE
22
1
0
09 Sep 2024
On latent dynamics learning in nonlinear reduced order modeling
N. Farenga
S. Fresca
Simone Brivio
Andrea Manzoni
AI4CE
34
1
0
27 Aug 2024
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
19
2
0
15 Aug 2024
Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations
Giovanni Catalani
Siddhant Agarwal
Xavier Bertrand
Frédéric Tost
Michaël Bauerheim
Joseph Morlier
AI4CE
41
4
0
29 Jul 2024
Sparsifying dimensionality reduction of PDE solution data with Bregman learning
T. J. Heeringa
Christoph Brune
Mengwu Guo
31
0
0
18 Jun 2024
A Low Rank Neural Representation of Entropy Solutions
Donsub Rim
Gerrit Welper
14
1
0
09 Jun 2024
GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications
Oisín M. Morrison
F. Pichi
J. Hesthaven
AI4CE
31
1
0
05 Jun 2024
Neural empirical interpolation method for nonlinear model reduction
Max Hirsch
F. Pichi
J. Hesthaven
32
1
0
05 Jun 2024
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
23
1
0
30 May 2024
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
Simone Brivio
S. Fresca
Andrea Manzoni
AI4CE
38
6
0
14 May 2024
Policy Optimization for PDE Control with a Warm Start
Xiangyuan Zhang
S. Mowlavi
M. Benosman
Tamer Basar
23
2
0
01 Mar 2024
Discovering Artificial Viscosity Models for Discontinuous Galerkin Approximation of Conservation Laws using Physics-Informed Machine Learning
Matteo Caldana
P. Antonietti
Luca Dede'
AI4CE
PINN
27
1
0
26 Feb 2024
Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash Simulations Using Graph Convolutional Neural Networks
Jonas Kneifl
Jörg Fehr
Steven L. Brunton
J. Nathan Kutz
AI4CE
26
1
0
14 Feb 2024
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
29
4
0
01 Feb 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
26
5
0
19 Jan 2024
Volume-Preserving Transformers for Learning Time Series Data with Structure
Benedikt Brantner
Guillaume de Romemont
Michael Kraus
Zeyuan Li
AI4TS
11
0
0
18 Dec 2023
Symplectic Autoencoders for Model Reduction of Hamiltonian Systems
Benedikt Brantner
Michael Kraus
11
6
0
15 Dec 2023
Deciphering and integrating invariants for neural operator learning with various physical mechanisms
Rui Zhang
Qi Meng
Zhi-Ming Ma
AI4CE
26
7
0
24 Nov 2023
Weak-Form Latent Space Dynamics Identification
April Tran
Xiaolong He
Daniel Messenger
Youngsoo Choi
David M. Bortz
33
7
0
20 Nov 2023
Efficient machine-learning surrogates for large-scale geological carbon and energy storage
T. Kadeethum
Stephen J Verzi
Hongkyu Yoon
AI4CE
14
2
0
11 Oct 2023
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
43
0
0
27 Sep 2023
Latent assimilation with implicit neural representations for unknown dynamics
Zhuoyuan Li
Bin Dong
Pingwen Zhang
AI4CE
22
3
0
18 Sep 2023
Interpretable learning of effective dynamics for multiscale systems
Emmanuel Menier
Sebastian Kaltenbach
Mouadh Yagoubi
Marc Schoenauer
P. Koumoutsakos
AI4CE
28
6
0
11 Sep 2023
Multi-fidelity reduced-order surrogate modeling
Paolo Conti
Mengwu Guo
Andrea Manzoni
A. Frangi
Steven L. Brunton
N. Kutz
AI4CE
26
23
0
01 Sep 2023
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
21
4
0
26 Aug 2023
Learning the solution operator of two-dimensional incompressible Navier-Stokes equations using physics-aware convolutional neural networks
Viktor Grimm
Alexander Heinlein
A. Klawonn
AI4CE
19
4
0
04 Aug 2023
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
30
4
0
04 Aug 2023
Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
N. R. Franco
S. Fresca
Filippo Tombari
Andrea Manzoni
AI4CE
24
16
0
03 Aug 2023
Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical Systems using Constrained Autoencoders
Samuel E. Otto
G. Macchio
C. Rowley
AI4CE
16
20
0
28 Jul 2023
Active-Learning-Driven Surrogate Modeling for Efficient Simulation of Parametric Nonlinear Systems
Harshit Kapadia
Lihong Feng
P. Benner
11
9
0
09 Jun 2023
Generative Adversarial Reduced Order Modelling
Dario Coscia
N. Demo
G. Rozza
GAN
AI4CE
34
5
0
25 May 2023
Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds
Harsh Sharma
Hongliang Mu
Patrick Buchfink
R. Geelen
Silke Glas
Boris Kramer
16
28
0
24 May 2023
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F. Pichi
B. Moya
J. Hesthaven
AI4CE
30
52
0
15 May 2023
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes
Francesco Regazzoni
S. Pagani
M. Salvador
Luca Dede'
A. Quarteroni
AI4CE
38
7
0
28 Apr 2023
A Deep Learning algorithm to accelerate Algebraic Multigrid methods in Finite Element solvers of 3D elliptic PDEs
Matteo Caldana
P. Antonietti
Luca Dede'
8
10
0
21 Apr 2023
Low-dimensional Data-based Surrogate Model of a Continuum-mechanical Musculoskeletal System Based on Non-intrusive Model Order Reduction
Jonas Kneifl
D. Rosin
Oliver Röhrle
Jörg Fehr
AI4CE
19
13
0
13 Feb 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
44
4
0
10 Feb 2023
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
18
34
0
06 Dec 2022
Operator inference with roll outs for learning reduced models from scarce and low-quality data
W. I. Uy
D. Hartmann
Benjamin Peherstorfer
AI4CE
17
15
0
02 Dec 2022
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
Paolo Conti
G. Gobat
S. Fresca
Andrea Manzoni
A. Frangi
AI4CE
20
49
0
13 Nov 2022
FO-PINNs: A First-Order formulation for Physics Informed Neural Networks
R. J. Gladstone
M. A. Nabian
N. Sukumar
Ankit Srivastava
Hadi Meidani
PINN
AI4CE
19
0
0
25 Oct 2022
Multi-fidelity surrogate modeling using long short-term memory networks
Paolo Conti
Mengwu Guo
Andrea Manzoni
J. Hesthaven
AI4CE
33
48
0
05 Aug 2022
FastSVD-ML-ROM
\textit{FastSVD-ML-ROM}
FastSVD-ML-ROM
: A Reduced-Order Modeling Framework based on Machine Learning for Real-Time Applications
G. Drakoulas
T. Gortsas
G. Bourantas
V. Burganos
D. Polyzos
AI4CE
11
15
0
24 Jul 2022
AI-enhanced iterative solvers for accelerating the solution of large scale parametrized systems
Stefanos Nikolopoulos
I. Kalogeris
V. Papadopoulos
G. Stavroulakis
16
11
0
06 Jul 2022
Virtual twins of nonlinear vibrating multiphysics microstructures: physics-based versus deep learning-based approaches
G. Gobat
S. Fresca
Andrea Manzoni
A. Frangi
AI4CE
8
8
0
12 May 2022
1
2
Next