ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05071
  4. Cited By
A Sample Selection Approach for Universal Domain Adaptation

A Sample Selection Approach for Universal Domain Adaptation

14 January 2020
Omri Lifshitz
Lior Wolf
ArXivPDFHTML

Papers citing "A Sample Selection Approach for Universal Domain Adaptation"

6 / 6 papers shown
Title
Open Set Domain Adaptation by Backpropagation
Open Set Domain Adaptation by Backpropagation
Kuniaki Saito
Shohei Yamamoto
Yoshitaka Ushiku
Tatsuya Harada
VLM
22
502
0
27 Apr 2018
Importance Weighted Adversarial Nets for Partial Domain Adaptation
Importance Weighted Adversarial Nets for Partial Domain Adaptation
Jing Zhang
Zewei Ding
W. Li
P. Ogunbona
16
419
0
25 Mar 2018
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
Riccardo Volpi
Pietro Morerio
Silvio Savarese
Vittorio Murino
GAN
OOD
35
232
0
23 Nov 2017
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
93
2,985
0
08 Nov 2017
Asymmetric Tri-training for Unsupervised Domain Adaptation
Asymmetric Tri-training for Unsupervised Domain Adaptation
Kuniaki Saito
Yoshitaka Ushiku
Tatsuya Harada
60
586
0
27 Feb 2017
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
275
9,418
0
28 May 2015
1