ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05202
  4. Cited By
Randomized Bregman Coordinate Descent Methods for Non-Lipschitz
  Optimization

Randomized Bregman Coordinate Descent Methods for Non-Lipschitz Optimization

15 January 2020
Tianxiang Gao
Songtao Lu
Jia-Wei Liu
C. Chu
ArXiv (abs)PDFHTML

Papers citing "Randomized Bregman Coordinate Descent Methods for Non-Lipschitz Optimization"

3 / 3 papers shown
Title
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate
  Updates
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
131
3
0
01 Mar 2023
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants
  via the Mirror Stochastic Polyak Stepsize
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
133
31
0
28 Oct 2021
Regret Bounds without Lipschitz Continuity: Online Learning with
  Relative-Lipschitz Losses
Regret Bounds without Lipschitz Continuity: Online Learning with Relative-Lipschitz Losses
Yihan Zhou
V. S. Portella
Mark Schmidt
Nicholas J. A. Harvey
38
21
0
22 Oct 2020
1