ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08187
  4. Cited By
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train
  Format

Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format

22 January 2020
Paul B. Rohrbach
S. Dolgov
Lars Grasedyck
Robert Scheichl
ArXivPDFHTML

Papers citing "Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format"

3 / 3 papers shown
Title
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
35
3
0
05 Sep 2022
Computing f-Divergences and Distances of High-Dimensional Probability
  Density Functions -- Low-Rank Tensor Approximations
Computing f-Divergences and Distances of High-Dimensional Probability Density Functions -- Low-Rank Tensor Approximations
A. Litvinenko
Youssef Marzouk
H. Matthies
M. Scavino
Alessio Spantini
14
4
0
13 Nov 2021
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
16
33
0
14 Jul 2020
1